- Browse by Author
Browsing by Author "Wan, Qiaoqiao"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Author Correction: Inhibitory effects of dopamine receptor D1 agonist on mammary tumor and bone metastasis(Springer Nature, 2022-11-03) Minami, Kazumasa; Liu, Shengzhi; Liu, Yang; Chen, Andy; Wan, Qiaoqiao; Na, Sungsoo; Li, Bai‑Yan; Matsuura, Nariaki; Koizumi, Masahiko; Yin, Yukun; Gan, Liangying; Xu, Aihua; Li, Jiliang; Nakshatri, Harikrishna; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyThis corrects the article "Inhibitory Effects of Dopamine Receptor D1 Agonist on Mammary Tumor and Bone Metastasis" in volume 7, 45686. doi: 10.1038/srep45686Item Differential Activation and Inhibition of RhoA by Fluid Flow Induced Shear Stress in Chondrocytes(Wiley, 2013) Wan, Qiaoqiao; Kim, Seung Joon; Yokota, Hiroki; Na, Sungsoo; Biomedical Engineering, Purdue School of Engineering and TechnologyPhysical force environment is a major factor that influences cellular homeostasis and remodelling. It is not well understood, however, as a potential role of force intensities in the induction of cellular mechanotransduction. Using a fluorescence resonance energy transfer-based approach, we asked whether activities of GTPase RhoA in chondrocytes are dependent on intensities of flow-induced shear stress. We hypothesized that RhoA activities can be either elevated or reduced by selecting different levels of shear-stress intensities. The result indicates that C28/I2 chondrocytes have increased RhoA activities in response to high shear stress (10 or 20 dyn/cm(2) ), whereas a decrease in activity was seen with an intermediate shear stress of 5 dyn/cm(2) . No changes were seen under low shear stress (2 dyn/cm(2) ). The observed two-level switch of RhoA activities is closely linked to the shear-stress-induced alterations in actin cytoskeleton and traction forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear stress suppressed RhoA activities, while high shear stress failed to activate them. In chondrocytes, expression of various metalloproteinases is, in part, regulated by shear and normal stresses through a network of GTPases. Collectively, the data suggest that intensities of shear stress are critical in differential activation and inhibition of RhoA activities in chondrocytes.Item DIFFERENTIAL RHOA ACTIVITY IN CHONDROCYTES UNDER FLOW(Office of the Vice Chancellor for Research, 2012-04-13) Wan, Qiaoqiao; Yokota, Hiroki; Na, SungsooMechanical force environment is a major factor that influences cellular homeostasis and remodeling. The prevailing wisdom in this field demon-strated that a threshold of mechanical forces or deformation was required to affect cell signaling. However, we hypothesized that RhoA activities can be either elevated or reduced by selecting different levels of shear stress inten-sities. To test this hypothesis, a fluorescence resonance energy transfer (FRET)-based approach was used. The result revealed that C28/I2 chondro-cytes exhibited an increase in RhoA activities in response to high shear stress (10 or 20 dyn/cm2), while they showed a decrease in their RhoA activ-ities to intermediate shear stress at 5 dyn/cm2. No changes were observed under low shear stress (2 dyn/ cm2). The observed two-level switch of RhoA activities was closely linked to the shear stress-induced alterations in actin cytoskeleton and traction forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear stress suppressed RhoA activities, while high shear stress failed to activate them. Collectively, these results here suggest that intensities of shear stress are critical in differential activa-tion and inhibition of RhoA activities in chondrocytes.Item Distinctive Subcellular Inhibition of Cytokine-Induced Src by Salubrinal and Fluid Flow(Public Library of Science, 2014-08-26) Wan, Qiaoqiao; Xu, Wenxiao; Yan, Jing-long; Yokota, Hiroki; Na, Sungsoo; Anatomy, Cell Biology and Physiology, School of MedicineA non-receptor protein kinase Src plays a crucial role in fundamental cell functions such as proliferation, migration, and differentiation. While inhibition of Src is reported to contribute to chondrocyte homeostasis, its regulation at a subcellular level by chemical inhibitors and mechanical stimulation has not been fully understood. In response to inflammatory cytokines and stress to the endoplasmic reticulum (ER) that increase proteolytic activities in chondrocytes, we addressed two questions: Do cytokines such as interleukin 1 beta (IL1β) and tumor necrosis factor alpha (TNFα) induce location-dependent Src activation? Can cytokine-induced Src activation be suppressed by chemically alleviating ER stress or by applying fluid flow? Using live cell imaging with two Src biosensors (i.e., cytosolic, and plasma membrane-bound biosensors) for a fluorescence resonance energy transfer (FRET) technique, we determined cytosolic Src activity as well as membrane-bound Src activity in C28/I2 human chondrocytes. In response to TNFα and IL1β, both cytosolic and plasma membrane-bound Src proteins were activated, but activation in the cytosol occurred earlier than that in the plasma membrane. Treatment with salubrinal or guanabenz, two chemical agents that attenuate ER stress, significantly decreased cytokine-induced Src activities in the cytosol, but not in the plasma membrane. In contrast, fluid flow reduced Src activities in the plasma membrane, but not in the cytosol. Collectively, the results demonstrate that Src activity is differentially regulated by salubrinal/guanabenz and fluid flow in the cytosol and plasma membrane.Item Effect of Shear Stress on RhoA Activities and Cytoskeletal Organization in Chondrocytes(2013-09-05) Wan, Qiaoqiao; Na, Sungsoo; Li, Jiliang; Yokota, HirokiMechanical force environment is a major factor that influences cellular homeostasis and remodeling. The prevailing wisdom in this field demonstrated that a threshold of mechanical forces or deformation was required to affect cell signaling. However, by using a fluorescence resonance energy transfer (FRET)-based approach, we found that C28/I2 chondrocytes exhibited an increase in RhoA activities in response to high shear stress (10 or 20 dyn/cm2), while they showed a decrease in their RhoA activities to intermediate shear stress at 5 dyn/cm2. No changes were observed under low shear stress (2 dyn/ cm2). The observed two-level switch of RhoA activities was closely linked to the shear stress-induced alterations in actin cytoskeleton and traction forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear stress suppressed RhoA activities, while high shear stress failed to activate them. Collectively, these results herein suggest that intensities of shear stress are critical in differential activation and inhibition of RhoA activities in chondrocytes.Item eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice(Springer Nature, 2019-12-09) Li, Jie; Li, Xinle; Liu, Daquan; Hamamura, Kazunori; Wan, Qiaoqiao; Na, Sungsoo; Yokota, Hiroki; Zhang, Ping; Biomedical Engineering, School of Engineering and TechnologyBone loss in postmenopausal osteoporosis is induced chiefly by an imbalance of bone-forming osteoblasts and bone-resorbing osteoclasts. Salubrinal is a synthetic compound that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Phosphorylation of eIF2α alleviates endoplasmic reticulum (ER) stress, which may activate autophagy. We hypothesized that eIF2α signaling regulates bone homeostasis by promoting autophagy in osteoblasts and inhibiting osteoclast development. To test the hypothesis, we employed salubrinal to elevate the phosphorylation of eIF2α in an ovariectomized (OVX) mouse model and cell cultures. In the OVX model, salubrinal prevented abnormal expansion of rough ER and decreased the number of acidic vesiculars. It regulated ER stress-associated signaling molecules such as Bip, p-eIF2α, ATF4 and CHOP, and promoted autophagy of osteoblasts via regulation of eIF2α, Atg7, LC3, and p62. Salubrinal markedly alleviated OVX-induced symptoms such as reduction of bone mineral density and bone volume fraction. In primary bone-marrow-derived cells, salubrinal increased the differentiation of osteoblasts, and decreased the formation of osteoclasts by inhibiting nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Live cell imaging and RNA interference demonstrated that suppression of osteoclastogenesis is in part mediated by Rac1 GTPase. Collectively, this study demonstrates that ER stress-autophagy axis plays an important role in OVX mice. Bone-forming osteoblasts are restored by maintaining phosphorylation of eIF2α, and bone-resorbing osteoclasts are regulated by inhibiting NFATc1 and Rac1 GTPase.Item Inhibiting checkpoint kinase 1 protects bone from bone resorption by mammary tumor in a mouse model(Impact Journals, 2018-01-19) Liu, Shengzhi; Liu, Yang; Minami, Kazumasa; Chen, Andy; Wan, Qiaoqiao; Yin, Yukun; Gan, Liangying; Xu, Aihua; Matsuura, Nariaki; Koizumi, Masahiko; Liu, Yunlong; Na, Sungsoo; Li, Jiliang; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyDNA damage response plays a critical role in tumor growth, but little is known about its potential role in bone metabolism. We employed selective inhibitors of Chk1 and examined their effects on the proliferation and migration of mammary tumor cells as well as the development of osteoblasts and osteoclasts. Further, using a mouse model of bone metastasis we evaluated the effects of Chk1 inhibitors on bone quality. Chk1 inhibitors blocked the proliferation, survival, and migration of tumor cells in vitro and suppressed the development of bone-resorbing osteoclasts by downregulating NFATc1. In the mouse model, Chk1 inhibitor reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Analysis of RNA-seq expression data indicated that the observed effects were mediated through the regulation of eukaryotic translation initiation factor 2 alpha, stress to the endoplasmic reticulum, S100 proteins, and bone remodeling-linked genes. Our findings suggest that targeting Chk1 signaling without adding DNA damaging agents may protect bone from degradation while suppressing tumor growth and migration.Item Inhibitory Effects of Dopamine Receptor D1 Agonist on Mammary Tumor and Bone Metastasis(Springer NPG, 2017-03-04) Minami, Kazumasa; Liu, Shengzhi; Liu, Yang; Chen, Andy; Wan, Qiaoqiao; Na, Sungsoo; Li, Bai-Yan; Matsuura, Nariaki; Koizumi, Masahiko; Yin, Yukun; Gan, Liangying; Xu, Aihua; Li, Jiliang; Nakshatri, Harikrishna; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyDopaminergic signaling plays a critical role in the nervous system, but little is known about its potential role in breast cancer and bone metabolism. A screening of ~1,000 biologically active compounds revealed that a selective agonist of dopamine receptor D1 (DRD1), A77636, inhibited proliferation of 4T1.2 mammary tumor cells as well as MDA-MB-231 breast cancer cells. Herein, we examined the effect of A77636 on bone quality using a mouse model of bone metastasis from mammary tumor. A77636 inhibited migration of cancer cells in a DRD1-dependent fashion and suppressed development of bone-resorbing osteoclasts by downregulating NFATc1 through the elevation of phosphorylation of eIF2α. In the mouse model of bone metastasis, A77636 reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Collectively, we expect that dopaminergic signaling might provide a novel therapeutic target for breast cancer and bone metastasis.Item Knee loading reduces MMP13 activity in the mouse cartilage(Springer Nature, 2013-11-01) Hamamura, Kazunori; Zhang, Ping; Zhao, Liming; Shim, Joon W.; Chen, Andy; Dodge, Todd R.; Wan, Qiaoqiao; Shih, Han; Na, Sungsoo; Lin, Chien-Chi; Sun, Hui Bin; Yokota, Hiroki; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Moderate loads with knee loading enhance bone formation, but its effects on the maintenance of the knee are not well understood. In this study, we examined the effects of knee loading on the activity of matrix metalloproteinase13 (MMP13) and evaluated the role of p38 MAPK and Rac1 GTPase in the regulation of MMP13. Methods: Knee loading (0.5-3 N for 5 min) was applied to the right knee of surgically-induced osteoarthritis (OA) mice as well as normal (non-OA) mice, and MMP13 activity in the femoral cartilage was examined. The sham-loaded knee was used as a non-loading control. We also employed primary non-OA and OA human chondrocytes as well as C28/I2 chondrocyte cells, and examined MMP13 activity and molecular signaling in response to shear at 2-20 dyn/cm². Results: Daily knee loading at 1 N for 2 weeks suppressed cartilage destruction in the knee of OA mice. Induction of OA elevated MMP13 activity and knee loading at 1 N suppressed this elevation. MMP13 activity was also increased in primary OA chondrocytes, and this increase was attenuated by applying shear at 10 dyn/cm². Load-driven reduction in MMP13 was associated with a decrease in the phosphorylation level of p38 MAPK (p-p38) and NFκB (p-NFκB). Molecular imaging using a fluorescence resonance energy transfer (FRET) technique showed that Rac1 activity was reduced by shear at 10 dyn/cm² and elevated by it at 20 dyn/cm². Silencing Rac1 GTPase significantly reduced MMP13 expression and p-p38 but not p-NFκB. Transfection of a constitutively active Rac1 GTPase mutant increased MMP13 activity, while a dominant negative mutant decreased it. Conclusions: Knee loading reduces MMP13 activity at least in part through Rac1-mediated p38 MAPK signaling. This study suggests the possibility of knee loading as a therapy not only for strengthening bone but also preventing tissue degradation of the femoral cartilage.Item Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells(Elsevier B.V., 2014-01-24) Kim, Seung Joon; Wan, Qiaoqiao; Cho, Eunhye; Han, Bumsoo; Yoder, Mervin C.; Voytik-Harbin, Sherry L.; Na, Sungsoo; Department of Biomedical Engineering, School of Engineering and TechnologyRecent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs.