- Browse by Author
Browsing by Author "Walters, Heather A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Eukaryotic Initiation Factor 2α Kinases Regulate Virulence Functions, Stage Conversion, and the Stress Response in Entamoeba invadens(American Society for Microbiology, 2022) Walters, Heather A.; Welter, Brenda H.; Moss, Harrison C.; Villano, Martha A.; Orobio-Hurtado, Ronny; Sullivan, William J., Jr.; Temesvari, Lesly A.; Pharmacology and Toxicology, School of MedicineEntamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. This pathogen possesses a two-stage life cycle consisting of an environmentally stable cyst and a pathogenic amoeboid trophozoite. Since infection is acquired by ingestion of cysts from contaminated food and water, this parasite is prevalent in underdeveloped countries. A reptilian pathogen, Entamoeba invadens, which can encyst in culture, has long served as a surrogate to study stage conversion. In the host, Entamoeba species must manage stress, including nutrient deprivation and host immune pressure. In many systems, the stress response is characterized by downregulation of translation, which is initiated by the phosphorylation of eukaryotic initiation factor-2 alpha (eIF2α). In mammalian cells, this phosphorylation is carried out by a family of eIF2α kinases. A canonical eIF2α translational control system exists in Entamoeba species; however, no eIF2α kinases have been characterized. In this study, we identified two eIF2α kinases in E. invadens, EiIF2K-A and EiIF2K-B. Their identity as eIF2α kinases was validated using a heterologous yeast system. We used an RNA interference (RNAi) trigger-mediated silencing system to reduce expression of EiIF2K-A, which also reduced expression of EiIF2K-B. Parasites with decreased kinase expression exhibited decreased phosphorylation of eIF2α and increased sensitivity to oxidative stress. Diminished kinase expression also correlated with an increased rate of encystation, a decreased rate of excystation, and an increase in several virulence functions, erythrophagocytosis and adhesion to host cells. Taken together, these data suggest that EiIF2K-A and EiIF2K-B are authentic eIF2α kinases that may regulate the Entamoeba stress response. IMPORTANCE: Entamoeba histolytica is a human pathogen that causes dysentery and affects millions of people worldwide. This parasite possesses a two-stage life cycle: an environmentally stable cyst and the pathogenic trophozoite. Cysts are ingested from contaminated food and water; thus, this parasite in prevalent in underdeveloped countries. Current therapies commonly cause adverse side effects; therefore, new treatments are needed. In the host, Entamoeba experiences stress brought on, in part, by the host immune system. Understanding stage conversion and the stress response of this pathogen may lead to new drug therapies. Using the model organism E. invadens, we identified two kinases similar to those involved in stress and stage conversion in other systems. We determined that these kinases may regulate the oxidative stress response, stage conversion, and virulence. This work is significant, as it will inform future studies on the life cycle and pathogenicity of Entamoeba species.Item Phosphorylation of Eukaryotic Initiation Factor 2-α in Response to Endoplasmic Reticulum and Nitrosative Stress in the human protozoan parasite, Entamoeba histolytica(Elsevier, 2019-12) Walters, Heather A.; Welter, Brenda H.; Sullivan, William J., Jr.; Temesvari, Lesly A.; Pharmacology and Toxicology, School of MedicineEntamoeba histolytica is an intestinal parasite infecting over 50 million people worldwide and is the causative agent of amebic dysentery and amoebic liver abscess. In the human host, E. histolytica experiences stress brought on by nutrient deprivation and the host immune response. To be a successful parasite, E. histolytica must counter the stress; therefore, understanding the stress response may uncover new drug targets. In many systems, the stress response includes down-regulation of protein translation, which is regulated by phosphorylation of eukaryotic initiation factor (eIF-2α). Previous work has demonstrated that phosphorylation of the E. histolytica eIF-2α (EheIF-2α) increases significantly when exposed to long-term serum starvation, oxidative stress, and long-term heat shock. However, the effects of reagents that are known to induce nitrosative or endoplasmic reticulum (ER) stresses, on EheIF-2α have yet to be evaluated. Nitrosative stress is part of the host's immune response and ER stress can be caused by several physiological or pathological factors. We treated E. histolytica cells with various reagents known to induce nitrosative stress (DPTA-NONOate and SNP) or ER stress (BFA and DTT). We examined the morphology of the ER, tracked phosphorylation of EheIF-2α, and assessed protein translation in control and stressed cells. While all four stress-inducing reagents caused a global reduction in protein translation, only DTT was capable of also inducing changes in the morphology of the ER (consistent with ER stress) and phosphorylation of EheIF-2α. This suggests that DTT authentically induces ER stress in E. histolytica and that this stress is managed by the eIF-2α-based system. This was supported by the observation that cells expressing a non-phosphorylatable version of eIF-2α were also highly sensitive to DTT-stress. Since protein translation decreased in the absence of phosphorylation of eIF-2α (after treatment with DPTA-NONOate, SNP or BFA), the data also indicate that there are alternative protein-translational control pathways in E. histolytica. Overall, our study further illuminates the stress response to nitrosative stress and ER stress in E. histolytica.