- Browse by Author
Browsing by Author "Waisman, Ari"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation(Elsevier, 2019-02-12) Garg, Garima; Muschaweckh, Andreas; Moreno, Helena; Vasanthakumar, Ajithkumar; Floess, Stefan; Lepennetier, Gildas; Oellinger, Rupert; Zhan, Yifan; Regen, Tommy; Hiltensperger, Michael; Peter, Christian; Aly, Lilian; Knier, Benjamin; Palam, Lakshmi Reddy; Kapur, Reuben; Kaplan, Mark H.; Waisman, Ari; Rad, Roland; Schotta, Gunnar; Huehn, Jochen; Kallies, Axel; Korn, Thomas; Pediatrics, School of MedicineFoxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.Item Sca-1+ cardiac fibroblasts promote development of heart failure(Wiley, 2018-09) Chen, Guobao; Bracamonte-Baran, William; Diny, Nicola L.; Hou, Xuezhou; Talor, Monica V.; Fu, Kai; Liu, Yue; Davogustto, Giovanni; Vasquez, Hernan; Taegtmeyer, Heinrich; Frazier, O. Howard; Waisman, Ari; Conway, Simon J.; Wan, Fengyi; Čiháková, Daniela; Pediatrics, School of MedicineThe causative effect of GM-CSF produced by cardiac fibroblasts to development of heart failure has not been shown. We identified the pathological GM-CSF-producing cardiac fibroblast subset and the specific deletion of IL-17A signaling to these cells attenuated cardiac inflammation and heart failure. We describe here the CD45−CD31−CD29+mEFSK4+PDGFRα+Sca-1+periostin+ (Sca-1+) cardiac fibroblast subset as the main GM-CSF producer in both experimental autoimmune myocarditis and myocardial infarction mouse models. Specific ablation of IL-17A signaling to Sca-1+periostin+ cardiac fibroblasts (PostnCreIl17rafl/fl) protected mice from post-infarct heart failure and death. Moreover, PostnCreIl17rafl/fl mice had significantly fewer GM-CSF-producing Sca-1+ cardiac fibrob-lasts and inflammatory Ly6Chi monocytes in the heart. Sca-1+ cardiac fibroblasts were not only potent GM-CSF producers, but also exhibited plasticity and switched their cytokine production profiles depending on local microenvironments. Moreover, we also found GMCSF-positive cardiac fibroblasts in cardiac biopsy samples from heart failure patients of myocarditis or ischemic origin. Thus, this is the first identification of a pathological GMCSF-producing cardiac fibroblast subset in human and mice hearts with myocarditis and ischemic cardiomyopathy. Sca-1+ cardiac fibroblasts direct the type of immune cells infiltrating the heart during cardiac inflammation and drive the development of heart failure.