- Browse by Author
Browsing by Author "Wahlin, Karl J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Morphological and Molecular Defects in Human Three-Dimensional Retinal Organoid Model of X-Linked Juvenile Retinoschisis(Elsevier, 2019-11-12) Huang, Kang-Chieh; Wang, Mong-Lien; Chen, Shih-Jen; Kuo, Jean-Cheng; Wang, Won-Jing; Nguyen, Phan Nguyen Nhi; Wahlin, Karl J.; Lu, Jyh-Feng; Tran, Audrey A.; Shi, Michael; Chien, Yueh; Yarmishyn, Aliaksandr A.; Tsai, Ping-Hsing; Yang, Tien-Chun; Jane, Wann-Neng; Chang, Chia-Ching; Peng, Chi-Hsien; Schlaeger, Thorsten M.; Chiou, Shih-Hwa; Biology, School of ScienceX-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model.Item Proteome Landscape of Epithelial-to-Mesenchymal Transition (EMT) of Retinal Pigment Epithelium Shares Commonalities With Malignancy-Associated EMT(American Society for Biochemistry and Molecular Biology, 2021) Sripathi, Srinivasa R.; Hu, Ming-Wen; Turaga, Ravi Chakra; Mertz, Joseph; Liu, Melissa M.; Wan, Jun; Maruotti, Julien; Wahlin, Karl J.; Berlinicke, Cynthia A.; Qian, Jiang; Zack, Donald J.; Medical and Molecular Genetics, School of MedicineStress and injury to the retinal pigment epithelium (RPE) often lead to dedifferentiation and epithelial-to-mesenchymal transition (EMT). These processes have been implicated in several retinal diseases, including proliferative vitreoretinopathy, diabetic retinopathy, and age-related macular degeneration. Despite the importance of RPE-EMT and the large body of data characterizing malignancy-related EMT, comprehensive proteomic studies to define the protein changes and pathways underlying RPE-EMT have not been reported. This study sought to investigate the temporal protein expression changes that occur in a human-induced pluripotent stem cell-based RPE-EMT model. We utilized multiplexed isobaric tandem mass tag labeling followed by high-resolution tandem MS for precise and in-depth quantification of the RPE-EMT proteome. We have identified and quantified 7937 protein groups in our tandem mass tag-based MS analysis. We observed a total of 532 proteins that are differentially regulated during RPE-EMT. Furthermore, we integrated our proteomic data with prior transcriptomic (RNA-Seq) data to provide additional insights into RPE-EMT mechanisms. To validate these results, we have performed a label-free single-shot data-independent acquisition MS study. Our integrated analysis indicates both the commonality and uniqueness of RPE-EMT compared with malignancy-associated EMT. Our comparative analysis also revealed that multiple age-related macular degeneration-associated risk factors are differentially regulated during RPE-EMT. Together, our integrated dataset provides a comprehensive RPE-EMT atlas and resource for understanding the molecular signaling events and associated biological pathways that underlie RPE-EMT onset. This resource has already facilitated the identification of chemical modulators that could inhibit RPE-EMT, and it will hopefully aid in ongoing efforts to develop EMT inhibition as an approach for the treatment of retinal disease.Item Transcriptome Landscape of Epithelial to Mesenchymal Transition of Human Stem Cell–Derived RPE(Association for Research in Vision and Ophthalmology, 2021-04) Sripathi, Srinivasa R.; Hu, Ming-Wen; Liu, Melissa M.; Wan, Jun; Cheng, Jie; Duan, Yukan; Mertz, Joseph L.; Wahlin, Karl J.; Maruotti, Julien; Berlinicke, Cynthia A.; Qian, Jiang; Zack, Donald J.; Medical and Molecular Genetics, School of MedicinePurpose: RPE injury often induces epithelial to mesenchymal transition (EMT). Although RPE-EMT has been implicated in a variety of retinal diseases, including proliferative vitroretinopathy, neovascular and atrophic AMD, and diabetic retinopathy, it is not well-understood at the molecular level. To contribute to our understanding of EMT in human RPE, we performed a time-course transcriptomic analysis of human stem cell-derived RPE (hRPE) monolayers induced to undergo EMT using 2 independent, yet complementary, model systems. Methods: EMT of human stem cell-derived RPE monolayers was induced by either enzymatic dissociation or modulation of TGF-β signaling. Transcriptomic analysis of cells at different stages of EMT was performed by RNA-sequencing, and select findings were confirmed by reverse transcription quantitative PCR and immunostaining. An ingenuity pathway analysis (IPA) was performed to identify signaling pathways and regulatory networks associated with EMT. Results: Proteocollagenolytic enzymatic dissociation and cotreatment with TGF-β and TNF-α both induce EMT in human stem cell-derived RPE monolayers, leading to an increased expression of mesenchymal factors and a decreased expression of RPE differentiation-associated factors. Ingenuity pathway analysis identified the upstream regulators of the RPE-EMT regulatory networks and identified master switches and nodes during RPE-EMT. Of particular interest was the identification of widespread dysregulation of axon guidance molecules during RPE-EMT progression. Conclusions: The temporal transcriptome profiles described here provide a comprehensive resource of the dynamic signaling events and the associated biological pathways that underlie RPE-EMT onset. The pathways defined by these studies may help to identify targets for the development of novel therapeutic targets for the treatment of retinal disease.