- Browse by Author
Browsing by Author "Wagner, Matias"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders(Elsevier, 2025) Lessel, Ivana; Baresic, Anja; Chinn, Ivan K.; May, Jonathan; Goenka, Anu; Chandler, Kate E.; Posey, Jennifer E.; Afenjar, Alexandra; Averdunk, Luisa; Bedeschi, Maria Francesca; Besnard, Thomas; Brager, Rae; Brick, Lauren; Brugger, Melanie; Brunet, Theresa; Byrne, Susan; de la Calle-Martín, Oscar; Capra, Valeria; Cardenas, Paul; Chappé, Céline; Chong, Hey J.; Cogne, Benjamin; Conboy, Erin; Cope, Heidi; Courtin, Thomas; Deb, Wallid; Dilena, Robertino; Dubourg, Christèle; Elgizouli, Magdeldin; Fernandes, Erica; Fitzgerald, Kristi K.; Gangi, Silvana; George-Abraham, Jaya K.; Gucsavas-Calikoglu, Muge; Haack, Tobias B.; Hadonou, Medard; Hanker, Britta; Hüning, Irina; Iascone, Maria; Isidor, Bertrand; Järvelä, Irma; Jin, Jay J.; Jorge, Alexander A. L.; Josifova, Dragana; Kalinauskiene, Ruta; Kamsteeg, Erik-Jan; Keren, Boris; Kessler, Elena; Kölbel, Heike; Kozenko, Mariya; Kubisch, Christian; Kuechler, Alma; Leal, Suzanne M.; Leppälä, Juha; Luu, Sharon M.; Lyon, Gholson J.; Madan-Khetarpal, Suneeta; Mancardi, Margherita; Marchi, Elaine; Mehta, Lakshmi; Menendez, Beatriz; Morel, Chantal F.; Moyer Harasink, Sue; Nevay, Dayna-Lynn; Nigro, Vincenzo; Odent, Sylvie; Oegema, Renske; Pappas, John; Pastore, Matthew T.; Perilla-Young, Yezmin; Platzer, Konrad; Powell-Hamilton, Nina; Rabin, Rachel; Rekab, Aisha; Rezende, Raissa C.; Robert, Leema; Romano, Ferruccio; Scala, Marcello; Poths, Karin; Schrauwen, Isabelle; Sebastian, Jessica; Short, John; Sidlow, Richard; Sullivan, Jennifer; Szakszon, Katalin; Tan, Queenie K. G.; Undiagnosed Diseases Network; Wagner, Matias; Wieczorek, Dagmar; Yuan, Bo; Maeding, Nicole; Strunk, Dirk; Begtrup, Amber; Banka, Siddharth; Lupski, James R.; Tolosa, Eva; Lessel, Davor; Medical and Molecular Genetics, School of MedicineBCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive. To dissect these, we performed genotype-phenotype correlations of 92 affected individuals harboring a pathogenic or likely pathogenic BCL11B variant, followed by immune phenotyping, analysis of chromatin immunoprecipitation DNA-sequencing data, dual-luciferase reporter assays, and molecular modeling. These integrative analyses enabled us to define three clinical subtypes of BCL11B-related disorders. It is likely that gene-disruptive BCL11B variants and missense variants affecting zinc-binding cysteine and histidine residues cause mild to moderate neurodevelopmental delay with increased propensity for behavioral and dental anomalies, allergies and asthma, and reduced type 2 innate lymphoid cells. Missense variants within C2H2-ZnF DNA-contacting α helices cause highly variable clinical presentations ranging from multisystem anomalies with demise in the first years of life to late-onset, hyperkinetic movement disorder with poor fine motor skills. Those not in direct DNA contact cause a milder phenotype through reduced, target-specific transcriptional activity. However, missense variants affecting C2H2-ZnFs, DNA binding, and "specificity residues" impair BCL11B transcriptional activity in a target-specific, dominant-negative manner along with aberrant regulation of alternative DNA targets, resulting in more severe and unpredictable clinical outcomes. Taken together, we suggest that the phenotypic severity and variability is largely dependent on the DNA-binding affinity and specificity of altered BCL11B proteins.Item UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism(Cell Press, 2021-01-07) Li, Chunmei; Beauregard-Lacroix, Eliane; Kondratev, Christine; Rousseau, Justine; Heo, Ah Jung; Neas, Katherine; Graham, Brett H.; Rosenfeld, Jill A.; Bacino, Carlos A.; Wagner, Matias; Wenzel, Maren; Al Mutairi, Fuad; Al Deiab, Hamad; Gleeson, Joseph G.; Stanley, Valentina; Zaki, Maha S.; Kwon, Yong Tae; Leroux, Michel R.; Campeau, Philippe M.; Medical and Molecular Genetics, School of MedicineThe ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones.