ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Vonlaufen, Nathalie"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    MYST family lysine acetyltransferase facilitates ataxia telangiectasia mutated (ATM) kinase-mediated DNA damage response in Toxoplasma gondii
    (Elsevier, 2010) Vonlaufen, Nathalie; Naguleswaran, Arunasalam; Coppens, Isabelle; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of Medicine
    The MYST family of lysine acetyltransferases (KATs) function in a wide variety of cellular operations, including gene regulation and the DNA damage response. Here we report the characterization of the second MYST family KAT in the protozoan parasite Toxoplasma gondii (TgMYST-B). Toxoplasma causes birth defects and is an opportunistic pathogen in the immunocompromised, the latter due to its ability to convert into a latent cyst (bradyzoite). We demonstrate that TgMYST-B can gain access to the parasite nucleus and acetylate histones. Overexpression of recombinant, tagged TgMYST-B reduces growth rate in vitro and confers protection from a DNA-alkylating agent. Expression of mutant TgMYST-B produced no growth defect and failed to protect against DNA damage. We demonstrate that cells overexpressing TgMYST-B have increased levels of ataxia telangiectasia mutated (ATM) kinase and phosphorylated H2AX and that TgMYST-B localizes to the ATM kinase gene. Pharmacological inhibitors of ATM kinase or KATs reverse the slow growth phenotype seen in parasites overexpressing TgMYST-B. These studies are the first to show that a MYST KAT contributes to ATM kinase gene expression, further illuminating the mechanism of how ATM kinase is up-regulated to respond to DNA damage.
  • Loading...
    Thumbnail Image
    Item
    Stress response pathways in protozoan parasites
    (Wiley, 2008) Vonlaufen, Nathalie; Kanzok, Stefan M.; Wek, Ronald C.; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of Medicine
    Diseases caused by protozoan parasites have a dramatic impact on world health. Emerging drug resistance and a general lack of experimental understanding has created a void in the medicine cabinet used to treat these widespread infections. A novel therapeutic idea that is receiving more attention is centred on targeting the microbe's response to the multitude of environmental stresses it encounters. Protozoan pathogens have complex life cycles, often having to transition from one host to another, or survive in a cyst form in the environment until a new host arrives. The need to respond to environmental cues and stress, and endure in less than optimal conditions, is paramount to their viability and successful progression through their life cycle. This review summarizes the research on parasitic stress responses for Apicomplexa, kinetoplastids and anaerobic protozoa, with an eye towards how these processes may be exploited therapeutically.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University