- Browse by Author
Browsing by Author "Vockley, Jerry"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Pegvaliase for the treatment of phenylketonuria: A pivotal, double-blind randomized discontinuation Phase 3 clinical trial(Elsevier, 2018) Harding, Cary O.; Amato, R. Stephen; Stuy, Mary; Longo, Nicola; Burton, Barbara K.; Posner, John; Weng, Haoling H.; Merilainen, Markus; Gu, Zhonghua; Jiang, Joy; Vockley, Jerry; Medical and Molecular Genetics, School of MedicineIntroduction Pegvaliase is a recombinant Anabaena variabilis phenylalanine ammonia lyase (PAL) enzyme under investigation for treatment of adult phenylketonuria (PKU). This manuscript describes results of a randomized discontinuation trial (RDT) designed to evaluate the effects of pegvaliase treatment on blood phenylalanine (Phe) and neuropsychiatric outcomes in adults with PKU. Methods PRISM-2 is a 4-part, Phase 3 study that enrolled adults with PKU receiving pegvaliase treatment (initiated in a prior Phase 2 or Phase 3 study). The RDT, Part 2 of PRISM-2, was an 8-week trial that evaluated change in blood Phe concentrations, neuropsychiatric and neurocognitive measures, and safety outcomes in PRISM-2 participants who had achieved at least a 20% blood Phe reduction from pre-treatment baseline with pegvaliase treatment. Participants were randomized 2:1 to either continue pegvaliase (20 mg/day or 40 mg/day) or switch to matching placebo. Results The pooled pegvaliase group enrolled 66 participants and each placebo group enrolled 14 participants. The primary endpoint of change in blood Phe concentration from RDT entry to RDT Week 8 was met with clinically meaningful and statistically significant differences between the pegvaliase and placebo groups. Mean (SD) blood Phe at the beginning of the RDT when all participants were receiving pegvaliase was 563.9 μM (504.6) in the group assigned to the 20 mg/day placebo group (n = 14), 508.2 μM (363.7) in those assigned to the 40 mg/day placebo group (n = 14), and 503.9 μM (520.3) in those assigned to continue pegvaliase treatment (n = 58). At Week 8 of the RDT, the least squares mean change (95% confidence interval) in blood Phe was 949.8 μM (760.4 to 1139.1) for the 20 mg/day placebo group and 664.8 μM (465.5 to 864.1) for the 40 mg/day placebo group in comparison to 26.5 μM (−68.3 to 121.3) for the pooled (20 mg/day and 40 mg/day) pegvaliase group (P < 0.0001 for pooled pegvaliase group vs each placebo group). Adverse events (AEs) were usually lower in the pooled placebo group when compared to the pooled pegvaliase group. The most common AEs for the pooled pegvaliase and pooled placebo groups were arthralgia (13.6% and 10.3%, respectively), headache (12.1% and 24.1%), anxiety (10.6% and 6.9%), fatigue (10.6% and 10.3%), and upper respiratory tract infection (1.5% and 17.2%). Conclusion Mean blood Phe reduction was sustained in the pegvaliase group, while placebo groups had mean blood Phe concentration increase toward pre-treatment baseline levels. Results from this study confirmed the efficacy of pegvaliase in maintaining reduced blood Phe concentrations with a manageable safety profile for most participants.Item Rapid Whole-Genomic Sequencing and a Targeted Neonatal Gene Panel in Infants With a Suspected Genetic Disorder(American Medical Association, 2023) Maron, Jill L.; Kingsmore, Stephen; Gelb, Bruce D.; Vockley, Jerry; Wigby, Kristen; Bragg, Jennifer; Stroustrup, Annemarie; Poindexter, Brenda; Suhrie, Kristen; Kim, Jae H.; Diacovo, Thomas; Powell, Cynthia M.; Trembath, Andrea; Guidugli, Lucia; Ellsworth, Katarzyna A.; Reed, Dallas; Kurfiss, Anne; Breeze, Janis L.; Trinquart, Ludovic; Davis, Jonathan M.; Pediatrics, School of MedicineImportance: Genomic testing in infancy guides medical decisions and can improve health outcomes. However, it is unclear whether genomic sequencing or a targeted neonatal gene-sequencing test provides comparable molecular diagnostic yields and times to return of results. Objective: To compare outcomes of genomic sequencing with those of a targeted neonatal gene-sequencing test. Design, setting, and participants: The Genomic Medicine for Ill Neonates and Infants (GEMINI) study was a prospective, comparative, multicenter study of 400 hospitalized infants younger than 1 year of age (proband) and their parents, when available, suspected of having a genetic disorder. The study was conducted at 6 US hospitals from June 2019 to November 2021. Exposure: Enrolled participants underwent simultaneous testing with genomic sequencing and a targeted neonatal gene-sequencing test. Each laboratory performed an independent interpretation of variants guided by knowledge of the patient's phenotype and returned results to the clinical care team. Change in clinical management, therapies offered, and redirection of care was provided to families based on genetic findings from either platform. Main outcomes and measures: Primary end points were molecular diagnostic yield (participants with ≥1 pathogenic variant or variant of unknown significance), time to return of results, and clinical utility (changes in patient care). Results: A molecular diagnostic variant was identified in 51% of participants (n = 204; 297 variants identified with 134 being novel). Molecular diagnostic yield of genomic sequencing was 49% (95% CI, 44%-54%) vs 27% (95% CI, 23%-32%) with the targeted gene-sequencing test. Genomic sequencing did not report 19 variants found by the targeted neonatal gene-sequencing test; the targeted gene-sequencing test did not report 164 variants identified by genomic sequencing as diagnostic. Variants unidentified by the targeted genomic-sequencing test included structural variants longer than 1 kilobase (25.1%) and genes excluded from the test (24.6%) (McNemar odds ratio, 8.6 [95% CI, 5.4-14.7]). Variant interpretation by laboratories differed by 43%. Median time to return of results was 6.1 days for genomic sequencing and 4.2 days for the targeted genomic-sequencing test; for urgent cases (n = 107) the time was 3.3 days for genomic sequencing and 4.0 days for the targeted gene-sequencing test. Changes in clinical care affected 19% of participants, and 76% of clinicians viewed genomic testing as useful or very useful in clinical decision-making, irrespective of a diagnosis. Conclusions and relevance: The molecular diagnostic yield for genomic sequencing was higher than a targeted neonatal gene-sequencing test, but the time to return of routine results was slower. Interlaboratory variant interpretation contributes to differences in molecular diagnostic yield and may have important consequences for clinical management.