- Browse by Author
Browsing by Author "Vladislav, Ioan Tudor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Gene Signature to Determine Metastatic Behavior in Thymomas(Public Library of Science, 2013-07-24) Gökmen-Polar, Yesim; Cook, Robert W.; Goswami, Chirayu Pankaj; Wilkinson, Jeff; Maetzold, Derek; Stone, John F.; Oelschlager, Kristen M.; Vladislav, Ioan Tudor; Shirar, Kristen L.; Kesler, Kenneth A.; Loehrer, Patrick J.; Badve, Sunil; Medicine, School of MedicinePurpose: Thymoma represents one of the rarest of all malignancies. Stage and completeness of resection have been used to ascertain postoperative therapeutic strategies albeit with limited prognostic accuracy. A molecular classifier would be useful to improve the assessment of metastatic behaviour and optimize patient management. Methods: qRT-PCR assay for 23 genes (19 test and four reference genes) was performed on multi-institutional archival primary thymomas (n = 36). Gene expression levels were used to compute a signature, classifying tumors into classes 1 and 2, corresponding to low or high likelihood for metastases. The signature was validated in an independent multi-institutional cohort of patients (n = 75). Results: A nine-gene signature that can predict metastatic behavior of thymomas was developed and validated. Using radial basis machine modeling in the training set, 5-year and 10-year metastasis-free survival rates were 77% and 26% for predicted low (class 1) and high (class 2) risk of metastasis (P = 0.0047, log-rank), respectively. For the validation set, 5-year metastasis-free survival rates were 97% and 30% for predicted low- and high-risk patients (P = 0.0004, log-rank), respectively. The 5-year metastasis-free survival rates for the validation set were 49% and 41% for Masaoka stages I/II and III/IV (P = 0.0537, log-rank), respectively. In univariate and multivariate Cox models evaluating common prognostic factors for thymoma metastasis, the nine-gene signature was the only independent indicator of metastases (P = 0.036). Conclusion: A nine-gene signature was established and validated which predicts the likelihood of metastasis more accurately than traditional staging. This further underscores the biologic determinants of the clinical course of thymoma and may improve patient management.Item Indiana Center for Breast Cancer Research(Office of the Vice Chancellor for Research, 2014-04-11) Nakshatri, Harikrishna; Gilley, David P.; Wells, Clark D.; Nephew, Kenneth; Radovich, Milan; Guise, Theresa; Bales, Casey; Perkins, Susan; Badve, Sunil; Vladislav, Ioan Tudor; Miller, KathyThe mission of IUPUI breast cancer signature center is to address prevention, early detection, and treatment of breast cancer through translational projects, supportive cores, and synergistic programs. This poster details our efforts improve resources for breast cancer research and efforts to develop multi-PI investigator proposals. The Signature Center has developed two web resources: the Breast Cancer Prognostics Database (PROGgene) to study prognostic implications of genes of interest in publically available breast cancer databases and PROGmiR, a microRNA database. The PROGgene can be used to study overall, recurrence free and metastasis free survival in large patient series. PROGmiR allows investigators to study the prognostic importance of microRNAs. Both PROGgene and PROGmiR have recently been published and accessed by investigators from >10 countries. The signature center has also devoted considerable efforts in developing tumor tissue resource. Tissue Bank includes a total sample of N = 600 cases with 30% non-Caucasian cases. Currently 460 cases have been assembled into a Tissue Microarray with clinical and follow up data. Expression pattern of AP2γ, a potential marker of breast cancer progression, has been analyzed in a TMA with ~170 cases. The breast cancer signature center has funded four pilot projects and projects for the fourth round of funding are currently under review. Drs. Clark Wells received funding for the project “Histologic Analysis of the Protein Levels of Amot130, AmotL1 and YAP in Normal, Hyperplastic and Invasive Breast Cancer Tissues”, which resulted in a publication in PNAS. Dr. David Gilley and his group received funding for the project: “Luminal mammary progenitors are a unique site of telomere dysfunction”, which was published in Stem Cell Reports. In the third project, Dr. Theresa Guise is investigating the mechanisms of cancer-associated muscular dysfunction with a future plan for a clinical trial. Drs. Ken Nephew and Milan Radovich received funding to obtain preliminary results for a multi-PI R01 or P01, which will explore genomics and epigenomics of breast cancer using clinical trial materials. Progress made by the signature center was integral in our request to Vera Bradley Foundation for Breast Cancer. This foundation has recently committed $15 million for the breast cancer program, which will be used to develop three themes of research with a focus on personalized therapies to improve outcome in breast cancer patients.