- Browse by Author
Browsing by Author "Villalba, German"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Networked Sensor System for the Analysis of Plot-Scale Hydrology(MDPI, 2017-03-20) Villalba, German; Plaza, Fernando; Zhong, Xiaoyang; Davis, Tyler W.; Navarro, Miguel; Li, Yimei; Slater, Thomas A.; Liang, Yao; Liang, Xu; Computer and Information Science, School of ScienceThis study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments.Item Towards Long-Term Multi-Hop WSN Deployments for Environmental Monitoring: An Experimental Network Evaluation(MDPI, 2014-12-05) Navarro, Miguel; Davis, Tyler W.; Villalba, German; Li, Yimei; Zhong, Xiaoyang; Erratt, Newlyn; Liang, Xu; Liang, Yao; Computer and Information Science, School of ScienceThis paper explores the network performance and costs associated with the deployment, labor, and maintenance of a long-term outdoor multi-hop wireless sensor network (WSN) located at the Audubon Society of Western Pennsylvania (ASWP), which has been in operation for more than four years for environmental data collection. The WSN performance is studied over selected time periods during the network deployment time, based on two different TinyOS-based WSN routing protocols: commercial XMesh and the open-source Collection Tree Protocol (CTP). Empirical results show that the network performance is improved with CTP (i.e., 79% packet reception rate, 96% packet success rate and 0.2% duplicate packets), versus using XMesh (i.e., 36% packet reception rate and 46% packet success rate, with 3%–4% duplicate packets). The deployment cost of the 52-node, 253-sensor WSN is $31,500 with an additional $600 per month in labor and maintenance resulting in a cost of $184 m−2·y−1 of sensed area. Network maintenance during the first four years of operation was performed on average every 12 days, costing approximately $187 for each field visit.