- Browse by Author
Browsing by Author "Vieira, Cristiano P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice(American Diabetes Association, 2018-09) Beli, Eleni; Yan, Yuanqing; Moldovan, Leni; Vieira, Cristiano P.; Gao, Ruli; Duan, Yaqian; Prasad, Ram; Bhatwadekar, Ashay; White, Fletcher A.; Townsend, Steven D.; Chan, Luisa; Ryan, Caitlin N.; Morton, Daniel; Moldovan, Emil G.; Chu, Fang-I; Oudit, Gavin Y.; Derendorf, Hartmut; Adorini, Luciano; Wang, Xiaoxin X.; Evans-Molina, Carmella; Mirmira, Raghavendra G.; Boulton, Michael E.; Yoder, Mervin C.; Li, Qiuhong; Levi, Moshe; Busik, Julia V.; Grant, Maria B.; Pediatrics, School of MedicineIntermittent fasting (IF) protects against the development of metabolic diseases and cancer, but whether it can prevent diabetic microvascular complications is not known. In db/db mice, we examined the impact of long-term IF on diabetic retinopathy (DR). Despite no change in glycated hemoglobin, db/db mice on the IF regimen displayed significantly longer survival and a reduction in DR end points, including acellular capillaries and leukocyte infiltration. We hypothesized that IF-mediated changes in the gut microbiota would produce beneficial metabolites and prevent the development of DR. Microbiome analysis revealed increased levels of Firmicutes and decreased Bacteroidetes and Verrucomicrobia. Compared with db/db mice on ad libitum feeding, changes in the microbiome of the db/db mice on IF were associated with increases in gut mucin, goblet cell number, villi length, and reductions in plasma peptidoglycan. Consistent with the known modulatory effects of Firmicutes on bile acid (BA) metabolism, measurement of BAs demonstrated a significant increase of tauroursodeoxycholate (TUDCA), a neuroprotective BA, in db/db on IF but not in db/db on AL feeding. TGR5, the TUDCA receptor, was found in the retinal primary ganglion cells. Expression of TGR5 did not change with IF or diabetes. However, IF reduced retinal TNF-α mRNA, which is a downstream target of TGR5 activation. Pharmacological activation of TGR5 using INT-767 prevented DR in a second diabetic mouse model. These findings support the concept that IF prevents DR by restructuring the microbiota toward species producing TUDCA and subsequent retinal protection by TGR5 activation.Item Specific mesoderm subset derived from human pluripotent stem cells ameliorates microvascular pathology in type 2 diabetic mice(American Association for the Advancement of Science, 2022) Gil, Chang-Hyun; Chakraborty, Dibyendu; Vieira, Cristiano P.; Prasain, Nutan; Calzi, Sergio Li; Fortmann, Seth D.; Hu, Ping; Banno, Kimihiko; Jamal, Mohamed; Huang, Chao; Sielski, Micheli S.; Lin, Yang; Huang, Xinxin; Dupont, Mariana D.; Floyd, Jason L.; Prasad, Ram; Longhini, Ana Leda F.; McGill, Trevor J.; Chung, Hyung-Min; Murphy, Michael P.; Kotton, Darrell N.; Boulton, Michael E.; Yoder, Mervin C.; Grant, Maria B.; Pediatrics, School of MedicineHuman induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.