- Browse by Author
Browsing by Author "Vidon, Philippe G."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item ASSESSING THE ROLE OF GEOLOGIC SETTING ON THE HYDROLOGY AND GROUND WATER GEOCHEMISTRY OF FENS IN THE GLACIATED MIDWESTERN UNITED STATES(2007-04-09T15:32:10Z) Graves, Dustin; Tedesco, Lenore P.; Vidon, Philippe G.; Jacinthe, Pierre-AndreABSTRACT Dustin Graves ASSESSING THE ROLE OF GEOLOGIC SETTING ON THE HYDROLOGY AND GROUND WATER GEOCHEMISTRY OF FENS IN THE GLACIATED MIDWESTERN UNITED STATES A water quality investigation of several fens located in the temperate glaciated Midwestern United States, near the southern limit of fen occurrence, was conducted to assess the role of geologic setting on the hydrogeochemical signature of fens and to compare hydrogeochemistry of fens located in different geographic and geologic settings. The five studied fens, located in the Central Till Plain physiographic region of Indiana, receive ground water sourced from glacial tills with very similar petrologic composition. These wetlands are hydrogeomorphically classified as slope wetlands with dominant ground water input. More specifically, these sites are inter-till / intra-till type fens (Type Ia and Ib) or outwash terrace type fens (Type II). Shallow ground water was collected just prior to surface interception (source water), and again after discharging into each fen (fen water) and measured for a suite of cations (Ca2+, Mg2+, K+, Na+) and anions (HCO3- SO42-, NO3-, NO2-, PO43-, and Cl-). Fen water hydroperiods showed similar dynamics, despite some variation in the hydrologic input of these systems (source water). Central Indiana fens are recognized as Ca2+, Mg2+, and HCO3- dominated systems. Fen water showed substantial evolution from source water at each study site, evidently the result of carbonate and gypsum dissolution dynamics. However, when only fen water is analyzed, results suggest that ground water of the southern fens represents geochemical similarity, with the exception of anthropogenic influence. The greatest geochemical variation among central Indiana fens can be attributed to Na+ and Cl-, which has been linked to road salt contamination at two of the study sites. This hydrogeochemical study also reveals that fens (slope wetlands) within this particular geologic setting of central Indiana show strong geochemical similarities to fens located throughout the temperate Northern Hemisphere. However, statistical analyses provide evidence that the parameters of Ca2+, HCO3-, and SO42- account for the greatest variation among these wetland communities, suggesting that calcium carbonate and gypsum dissolution dynamics are primarily fen specific while other parameters remain relatively homogenous across a wide geographical range. Lenore P. Tedesco, Ph. D.Item Coupled biogeochemical cycles in riparian zones with contrasting hydrogeomorphic characteristics in the US Midwest(2013-12-11) Liu, Xiaoqiang; Vidon, Philippe G.; Jacinthe, Pierre-Andre; Babbar-Sebens, MeghnaNumerous studies have investigated the fate of pollutants in riparian buffers, but few studies have focused on the control of multiple contaminants simultaneously in riparian zones. To better understand what drives the biogeochemical cycles of multiple contaminants in riparian zones, a 19-month study was conducted in riparian buffers across a range of hydrogeomorphic (HGM) settings in the White River watershed in Indiana. Three research sites [Leary Webber Ditch (LWD), Scott Starling (SS) and White River (WR)] with contrasting hydro-geomorphology were selected. We monitored groundwater table depth, oxidation reduction potential (ORP), dissolved oxygen (DO), dissolved organic carbon (DOC), NO3-, NH4+, soluble reactive phosphorus (SRP), SO42- , total Hg and methylmercury (MeHg). Our results revealed that differences in HGM conditions translated into distinctive site hydrology, but significant differences in site hydrology did not lead to different biogeochemical conditions. Nitrate reduction and sulfate re-oxidation were likely associated with major hydrological events, while sulfate reduction, ammonia and methylmercury production were likely associated with seasonal changes in biogeochemical conditions. Results also suggest that the LWD site was a small sink for nitrate but a source for sulfate and MeHg, the SS site was a small sink for MeHg but had little effect on NO3-, SO42- and SRP, and the WR was an intermediate to a large sink for nitrate, an intermediate sink for SRP, and a small source for MeHg. Land use and point source appears to have played an important role in regulating solute concentrations (NO3-, SRP and THg). Thermodynamic theories probably oversimplify the complex patterns of solute dynamics which, at the sites monitored in the present study, were more strongly impacted by HGM settings, land use, and proximity to a point source.Item IMPACT OF PRECIPITATION CHARACTERISTICS IN NUTRIENT AND CARBON DELIVERY TO STREAMS IN ARTIFICIALLY DRAINED LANDSCAPES OF THE MIDWEST(2010-02-02T17:58:27Z) Cuadra, Pilar E.; Vidon, Philippe G.; Jacinthe, Pierre-Andre; Royer, Todd V.Although many studies have investigated the impact of tile drainage on nitrate and pesticide export from cropland to streams, little information is known about the primary hydrological controls of tile flow response to precipitation events and its impact on N, P and C transport in artificially drained landscapes of the US Midwest. This study investigated 1) the relationship between precipitation characteristics and tile flow response at a high temporal resolution during storms; 2) the relative importance of macropore and matrix flow in tile flow and in N, P and C transport to tile drains; and 3) the impact of storm characteristics in N, P and C fluxes/export rates. The study was conducted between April and June 2008, in an agricultural tile drained soybean field, representative of agro-ecosystems of the US Midwest near Indianapolis, IN. For the 8 storms analyzed, results showed that bulk precipitation amount was the best predictor of mean and maximum tile flow, time to peak and runoff ratio. The contribution of macropore flow to total flow increased with precipitation amount, representing between 11% and 50% of total drain flow, with peak contributions between 15% and 74% of flow. For large storms (> 6 cm rainfall), cations data indicated a dilution of groundwater with new water as discharge peaked. Although no clear indication of dilution was observed for smaller storms (< 4 cm rainfall), macropore flow still contributed between 11% and 17% of total flow. For large storms, the transport of dissolved organic carbon (DOC), total phosphorous (TP) and soluble reactive phosphorus (SRP) was found to be regulated mainly by macropore flow while nitrate transport was regulated mainly by matrix flow. For smaller storms, macropore flow dominated DOC and TP transport while SRP and nitrate transport was dominated by matrix flow. These results significantly increase our understanding of the hydrological functioning of tile drained fields and its interaction with N, P and C transport in spring, which is the time of the year during which most water and N losses from tile drains occur in the Midwest.Item THE IMPACT OF STORM CHARACTERISTICS AND LAND USE ON NUTRIENT EXPORT IN TWO GLACIATED WATERSHEDS IN CENTRAL INDIANA, USA(2007-09-18T17:29:39Z) Wagner, Laura E.; Vidon, Philippe G.; Tedesco, Lenore P.; Licht, Kathy J.This study investigated nutrient export during three spring storm events in two different land use watersheds (agricultural and mixed land use) in a glacial till landscape of the Midwestern, USA. The objectives of the study were: (1) to determine how land use affects water, nitrate, soluble reactive phosphorus (SRP) and dissolved organic carbon (DOC) delivery (timing, amount) to streams during spring storms in two central Indiana watersheds with contrasting land use; and (2) to determine nitrate, SRP and DOC flow pathways to streams during spring storms. High frequency stream sampling of nutrients and cations, coupled with hydrograph separations using δ18O, was used to identify water flow pathways and event and pre-event water contributions to the streams. Data indicate land use and storm characteristics play a role in the export of water and nutrients. In the agricultural watershed (Watershed A), the storm hydrograph is dominated by pre-event water, whereas the mixed land use watershed (Watershed M) storm hydrograph is more event water dominated. Watershed A also contains higher nutrient concentrations, especially nitrate. High bulk precipitation and greater maximum intensity export more nitrate, SRP, and DOC to the streams. Results also indicate nitrate, DOC, and SRP concentrations display distinct temporal patterns during spring storm events. DOC concentration increased with stormflow and peaked on the rising limb/with maximum discharge regardless of land use or storm event. In Watershed A, SRP concentration followed a similar pattern to DOC during small storms; therefore they are believed to be exported together with flushing of saturated near-surface soil waters via macropores/overland flow. However, SRP likely has multiple flowpaths, one dominated over another depending on the storm. Nitrate concentrations matched Ca2+, Mg2+, and Na+ trajectories and decreased with stormflow, suggesting a tile drain/subsurface flowpath. Nitrate and SRP peak concentrations are delayed relative to DOC in Watershed M. The wet retention ponds in the headwaters are believed to delay the stormflow response, and therefore, the delivery of nutrients to the stream.Item THE INFLUENCE OF SEASON, FLOW REGIME, AND WATERSHED LAND USE AND LAND COVER ON NUTRIENT DELIVERY TO TWO RAPIDLY URBANIZING WATERSHEDS IN CENTRAL INDIANA, USA(2007-03-20T15:13:04Z) Casey, Leda René; Tedesco, Lenore P.; Vidon, Philippe G.; Wilson, Jeffrey S. (Jeffrey Scott), 1967-This study explores relationships between temperate stream geochemistry and watershed land cover in two temperate streams, Fishback Creek and School Branch Creek, located in a rapidly urbanizing area on the northwest side of Indianapolis in Eagle Creek Watershed, Indiana. The temporal and spatial patterns of NO3-N, PO4, DOC, SiO2, Cl-, and Na+ were assessed to understand the influence of land cover on the magnitude and timing of water, chemical, and nutrient delivery to streams. Results of the study indicate that the influences of different land cover types on water delivery to streams and in-stream water quality vary seasonally and with respect to flow regime, that urbanization may result in decreased nitrate input, and that phosphate and dissolved organic carbon concentrations will likely remain constant as the watershed is developed. Results also indicate that riparian buffer downstream of intense agriculture lands dilutes high agricultural NO3-N concentrations, but not enough to return in-stream concentrations to natural levels.Item Invasive Reed Canary Grass (Phalaris arundinacea) and Carbon Sequestration in a Wetland Complex(2009-01-16T16:35:33Z) Bills, Jonathan S.; Jacinthe, Pierre-Andre; Tedesco, Lenore P.; Vidon, Philippe G.Terrestrial carbon sequestration is one of several proposed strategies to reduce the rate of carbon dioxide (CO2) accumulation in the atmosphere, but the impact of plant invasion on soil organic carbon (SOC) storage is unclear. The results of past studies are often confounded by differences in vegetation and environmental conditions. Reed canary grass (Phalaris arundinacea) is an herbaceous species that invades riparian fringes and wetlands throughout North America, including Beanblossom Bottoms – a wetland complex in south-central Indiana. Because of the prolific growth of P. arundinacea, it was hypothesized that significant alterations in SOC pools and dynamics would occur at invaded sites within the wetland complex. To test this hypothesis, study plots were established in areas colonized either by native herbaceous species or by P. arundinacea. Above and below-ground biomass were collected at the middle and end of the growing season and were analyzed for cellulose, lignin, acid detergent fiber, total phenolics, and organic carbon and nitrogen concentration. Soil samples were analyzed for SOC and nitrogen, bulk density, pH, and texture. The biomass of Scirpus cyperinus – a native wetland species was found to contain significantly (P < 0.05) more lignin (168 g kg-1 versus 98 g kg-1) and phenolics (19 g kg-1 versus 3 g kg-1), and had a higher C to N ratio (28 versus 20) than P. arundinacea biomass, suggesting greater recalcitrance of S. cyperinus tissues compared to P. arundinacea biomass. Results of a laboratory incubation study were consistent with the residue biochemistry data and showed that S. cyperinus biomass degraded at much slower rates than the biomass of P. arundinacea. However, measurements of SOC pools (0-30 cm) showed larger pools under P. arundinacea (25.5 Mg C ha-1) than under stands of S. cyperinus (21.8 Mg C ha-1). Likewise, SOC stocks under stands of mixed native vegetation were significantly (P < 0.05) smaller (18.8 Mg C ha-1) than in areas invaded by P. arundinacea. Biomass of the mixed native vegetation was also considered more recalcitrant than that of P. arundinacea based on residue biochemistry. Therefore, contrary to the study hypothesis, residue quality was not a good predictor of SOC stocks in the wetland soils. Thus, it appears that traditional laboratory assessments of biomass recalcitrance and decomposition do not accurately simulate the various biological interactions occurring in the field.Item NITROGEN AND PHOSPHORUS CYCLING IN MIDWESTERN AGRICULTURAL WETLANDS IN RESPONSE TO ALTERED HYDROLOGIC REGIMES(2011-03-16) Smith, Allyson Shaidnagle; Jacinthe, Pierre-Andre; Tedesco, Lenore P.; Vidon, Philippe G.The transfer of nutrients from US Midwest croplands into surface waters causes eutrophication and a decline in water quality. Temporary retention of nutrient-rich runoff in constructed wetlands can help mitigate these negative impacts through physical entrapment and biological transformation of nitrogen (N) and phosphorus (P). However, with the expectation that wet-dry periods will be more frequent in the region, there is a need to better understand the mechanisms that control nutrient retention and release in US Midwest wetlands constructed on former croplands. In this study, soil cores (30 cm long, 20 cm diam) were collected from two constructed wetlands (4 and 8-yr old), and the surface (0-20 cm) and subsurface (40-60 cm) layers of a cropland where a constructed wetland will be constructed in the future. Soil cores were subjected to either a moist or a dry treatment for 5 weeks, and then flooded with stream water (water depth 6 cm). The flux of nutrients, N2O, cations, and variation in floodwater chemistry (pH and ORP) were monitored for another 5 week period. Porewater was tested during the final 3 weeks of the experiment. Nitrate (0.1-130 mg N m-2 d-1) and inorganic P (Pi) fluxes (0.09-2.9 mg P m-2 d-1) were significantly higher in the dry treatment cores. Regardless of site, the dry treatment also resulted in higher floodwater NO3- concentrations suggesting organic matter mineralization and mineral N build up during the drying phase. However, this initial NO3- release was rapidly denitrified as indicated by the sharp increase in N2O production during that period. In contrast to N, the release of Pi was significantly higher in cores from the cropland. Soil at these sites had higher water extractable Pi and total P. Contrary to the study hypothesis and the results of previous studies, Pi concentration in floodwater and porewater was not correlated with dissolved Fe suggesting that reductive dissolution was not the dominant process controlling P release in US Midwest mineral soils developed from calcareous glacial till. Rather, variation in Ca2+ concentration and its relationship with Pi suggest that dissolution of Ca-containing minerals may be more important and should be the focus of future studies examining the geochemistry of P in these constructed wetlands.Item Nitrogen, Phosphorus and Carbon Dynamics during Storms in a Glaciated Third-Order Watershed in the US Midwest(2013-08-22) Johnstone, Joseph A.; Vidon, Philippe G.; Tedesco, Lenore P.; Licht, Kathy J.The characterization of the nutrients nitrogen, phosphorus and carbon (NPC) export to streams during storms is an integral part of understanding processes affecting water quality. Despite the fact that excessive levels of these nutrients in the Mississippi River basin adversely affects water quality in the Gulf of Mexico, little research has been conducted on NPC dynamics during storms on larger (>20 km2) agriculturally dominated Midwestern watersheds. This project examined the storm export of nitrate, ammonium, total phosphorus, and dissolved organic carbon (DOC) in the upper Eagle Creek Watershed (UECW) (274 km2) in Central Indiana, USA. Water samples were collected during five winter and spring storms in 2007 and 2008 on the rising and falling limb of the hydrograph, in order to characterize NPC dynamics during storm events. Stream discharge and precipitation was monitored continuously, and major cations were used to examine changes in source water over the duration of the storm and assist in the determination of potential flowpaths. DOC, total P, and TKN (Total Kjeldahl Nitrogen) tended to peak with discharge, while nitrate usually exhibited a slight lag and peaked on the receding limb. Total phosphorus, NH3-, TKN, and DOC appear to be delivered to the stream primarily by overland flow. NO3--N appear to be delivered by a combination of tile drain and macropore flow. Overall UECW displayed smoother nutrient export patterns than smaller previously studied watersheds in the area suggesting that scale may influence nutrient export dynamics. Further research is underway on a 3000 km2 watershed in the area to further examine the role scale may play in nutrient export patterns.Item Nitrous oxide emission from riparian buffers in agricultural landscapes of Indiana(2014-02-25) Fisher, Katelin Rose; Babbar-Sebens, Meghna; Jacinthe, Pierre-André; Vidon, Philippe G.Riparian buffers have well documented capacity to remove nitrate (NO3-) from runoff and subsurface flow paths, but information on field-scale N2O emission from these buffers is lacking. This study monitored N2O fluxes at two agricultural riparian buffers in the White River watershed (Indiana) from December 2009 to May 2011 to assess the impact of landscape and hydrogeomorphologic factors on emission. Soil chemical and biochemical properties were measured and environmental variables (soil temperature and moisture) were monitored in an attempt to identify key drivers of N2O emission. The study sites included a mature riparian forest (WR) and a riparian grass buffer (LWD); adjacent corn fields were also monitored for land-use comparison. With the exception of net N mineralization, most soil properties (particle size, bulk density, pH, denitrification potential, organic carbon, C:N) showed little correlation with N2O emission. Analysis of variance (ANOVA) identified season, land-use (riparian buffer vs. crop field), and site geomorphology as major drivers of N2O emission. At both study sites, N2O emission showed strong seasonal variability; the largest emission peaks in the riparian buffers (up to 1,300 % increase) and crop fields (up to 3,500 % increase) occurred in late spring/early summer as a result of flooding, elevated soil moisture and N-fertilization. Nitrous oxide emission was found to be significantly higher in crop fields than in riparian buffers at both LWD (mean: 1.72 and 0.18 mg N2O-N m-2 d-1) and WR (mean: 0.72 and 1.26 mg N2O-N m-2 d-1, respectively). Significant difference (p=0.02) in N2O emission between the riparian buffers was detected, and this effect was attributed to site geomorphology and the greater potential for flooding at the WR site (no flooding occurred at LWD). More than previously expected, the study results demonstrate that N2O emission in riparian buffers is largely driven by landscape geomorphology and land-stream connection (flood potential).Item Nutrient and Contaminant Export Dynamics in a Larger-order Midwestern Watershed: Upper White River, Central Indiana, USA(2010-10-15) Stouder, Michael David Wayne; Tedesco, Lenore P.; Vidon, Philippe G.; Jacinthe, Pierre-AndreThe transport of excess nutrients, sediment, and other contaminants to surface waters has been shown to cause a number of environmental and human health concerns. An understanding of the export pathways that these contaminants follow to surrounding water bodies is crucial to the anticipation and management of peak concentration events. Several studies have demonstrated that the majority of annual contaminant loading in the Midwest occurs during periods of elevated discharge. However, many studies use a limited number of sampling points to determine concentration patterns, loadings, and fluxes which decreases accuracy. Through high-resolution storm sampling conducted in a 2945 km2 (1137 mi2) area of central Indiana’s Upper White River Watershed, this research has documented the complex concentration signals and fluxes associated with a suite of cations, nutrients, and contaminants and isolated their primary transport pathways. Additionally, by comparing the results of similar studies conducted on smaller areas within this watershed, differences in concentration patterns and fluxes, as they relate to drainage area, have also been documented. Similar to the results of previous studies, NO3- concentrations lacked a well-defined relationship relative to discharge and was attributed to primarily subsurface contribution. DOC was exported along a shallow, lateral subsurface pathway, TP and TSS via overland flow, and TKN through a combination of both. Near or in-channel scouring of sediment increased DOC, TKN, TP, and TSS concentrations during Storm 2. Atrazine export was attributed to a combination of overland and subsurface pathways. 2-MIB and geosmin derived from different sources and pathways despite being produced by similar organisms. 2-MIB concentration patterns were characterized by dilution of an in-stream source during Storm 1 and potential sediment export during Storm 2 while in-stream concentrations or a sediment source of geosmin was rapidly exhausted during Storm 1. Many of the concentration patterns were subject to an exaggerated averaging effect due to the mixing of several larger watersheds, especially during Storm 1. This research illustrates the need for high-frequency sampling to accurately quantify contaminant loads for total maximum daily load (TMDL) values, developing best management practices (BMPs), and confronting the challenges associated with modeling increasingly larger-scale watersheds.