- Browse by Author
Browsing by Author "Vassar, Mary J."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Association of Sex and Age With Mild Traumatic Brain Injury-Related Symptoms: A TRACK-TBI Study(American Medical Association, 2021-04-01) Levin, Harvey S.; Temkin, Nancy R.; Barber, Jason; Nelson, Lindsay D.; Robertson, Claudia; Brennan, Jeffrey; Stein, Murray B.; Yue, John K.; Giacino, Joseph T.; McCrea, Michael A.; Diaz-Arrastia, Ramon; Mukherjee, Pratik; Okonkwo, David O.; Boase, Kim; Markowitz, Amy J.; Bodien, Yelena; Taylor, Sabrina; Vassar, Mary J.; Manley, Geoffrey T.; TRACK-TBI Investigators; Adeoye, Opeolu; Badjatia, Neeraj; Bullock, M. Ross; Chesnut, Randall; Corrigan, John D.; Crawford, Karen; Dikmen, Sureyya; Duhaime, Ann-Christine; Ellenbogen, Richard; Feeser, V. Ramana; Ferguson, Adam R.; Foreman, Brandon; Gardner, Raquel; Gaudette, Etienne; Gonzalez, Luis; Gopinath, Shankar; Gullapalli, Rao; Hemphill, J. Claude; Hotz, Gillian; Jain, Sonia; Keene, C. Dirk; Korley, Frederick K.; Kramer, Joel; Kreitzer, Natalie; Lindsell, Chris; Machamer, Joan; Madden, Christopher; Martin, Alastair; McAllister, Thomas; Merchant, Randall; Nolan, Amber; Ngwenya, Laura B.; Noel, Florence; Palacios, Eva; Puccio, Ava; Rabinowitz, Miri; Rosand, Jonathan; Sander, Angelle; Satris, Gabriella; Schnyer, David; Seabury, Seth; Sun, Xiaoying; Toga, Arthur; Valadka, Alex; Wang, Kevin; Yuh, Esther; Zafonte, Ross; Psychiatry, School of MedicineImportance: Knowledge of differences in mild traumatic brain injury (mTBI) recovery by sex and age may inform individualized treatment of these patients. Objective: To identify sex-related differences in symptom recovery from mTBI; secondarily, to explore age differences within women, who demonstrate poorer outcomes after TBI. Design, setting, and participants: The prospective cohort study Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) recruited 2000 patients with mTBI from February 26, 2014, to July 3, 2018, and 299 patients with orthopedic trauma (who served as controls) from January 26, 2016, to July 27, 2018. Patients were recruited from 18 level I trauma centers and followed up for 12 months. Data were analyzed from August 19, 2020, to March 3, 2021. Exposures: Patients with mTBI (defined by a Glasgow Coma Scale score of 13-15) triaged to head computed tomography in 24 hours or less; patients with orthopedic trauma served as controls. Main outcomes and measures: Measured outcomes included (1) the Rivermead Post Concussion Symptoms Questionnaire (RPQ), a 16-item self-report scale that assesses postconcussion symptom severity over the past 7 days relative to preinjury; (2) the Posttraumatic Stress Disorder Checklist for the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (PCL-5), a 20-item test that measures the severity of posttraumatic stress disorder symptoms; (3) the Patient Health Questionnaire-9 (PHQ-9), a 9-item scale that measures depression based on symptom frequency over the past 2 weeks; and (4) the Brief Symptom Inventory-18 (BSI-18), an 18-item scale of psychological distress (split into Depression and Anxiety subscales). Results: A total of 2000 patients with mTBI (1331 men [67%; mean (SD) age, 41.0 (17.3) years; 1026 White (78%)] and 669 women [33%; mean (SD) age, 43.0 (18.5) years; 505 (76%) White]). After adjustment of multiple comparisons, significant TBI × sex interactions were observed for cognitive symptoms (B = 0.76; 5% false discovery rate-corrected P = .02) and somatic RPQ symptoms (B = 0.80; 5% false discovery rate-corrected P = .02), with worse symptoms in women with mTBI than men, but no sex difference in symptoms in control patients with orthopedic trauma. Within the female patients evaluated, there was a significant TBI × age interaction for somatic RPQ symptoms, which were worse in female patients with mTBI aged 35 to 49 years compared with those aged 17 to 34 years (B = 1.65; P = .02) or older than 50 years (B = 1.66; P = .02). Conclusions and relevance: This study found that women were more vulnerable than men to persistent mTBI-related cognitive and somatic symptoms, whereas no sex difference in symptom burden was seen after orthopedic injury. Postconcussion symptoms were also worse in women aged 35 to 49 years than in younger and older women, but further investigation is needed to corroborate these findings and to identify the mechanisms involved. Results suggest that individualized clinical management of mTBI should consider sex and age, as some women are especially predisposed to chronic postconcussion symptoms even 12 months after injury.Item Diffusion Tensor Imaging Reveals Elevated Diffusivity of White Matter Microstructure that Is Independently Associated with Long-Term Outcome after Mild Traumatic Brain Injury: A TRACK-TBI Study(Mary Ann Liebert, 2022) Palacios, Eva M.; Yuh, Esther L.; Mac Donald, Christine L.; Bourla, Ioanna; Wren-Jarvis, Jamie; Sun, Xiaoying; Vassar, Mary J.; Diaz-Arrastia, Ramon; Giacino, Joseph T.; Okonkwo, David O.; Robertson, Claudia S.; Stein, Murray B.; Temkin, Nancy; McCrea, Michael A.; Levin, Harvey S.; Markowitz, Amy J.; Jain, Sonia; Manley, Geoffrey T.; Mukherjee, Pratik; TRACK-TBI Investigators; Psychiatry, School of MedicineDiffusion tensor imaging (DTI) literature on single-center studies contains conflicting results regarding acute effects of mild traumatic brain injury (mTBI) on white matter (WM) microstructure and the prognostic significance. This larger-scale multi-center DTI study aimed to determine how acute mTBI affects WM microstructure over time and how early WM changes affect long-term outcome. From Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI), a cohort study at 11 United States level 1 trauma centers, a total of 391 patients with acute mTBI ages 17 to 60 years were included and studied at two weeks and six months post-injury. Demographically matched friends or family of the participants were the control group (n = 148). Axial diffusivity (AD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were the measures of WM microstructure. The primary outcome was the Glasgow Outcome Scale Extended (GOSE) score of injury-related functional limitations across broad life domains at six months post-injury. The AD, MD, and RD were higher and FA was lower in mTBI versus friend control (FC) at both two weeks and six months post-injury throughout most major WM tracts of the cerebral hemispheres. In the mTBI group, AD and, to a lesser extent, MD decreased in WM from two weeks to six months post-injury. At two weeks post-injury, global WM AD and MD were both independently associated with six-month incomplete recovery (GOSE <8 vs = 8) even after accounting for demographic, clinical, and other imaging factors. DTI provides reliable imaging biomarkers of dynamic WM microstructural changes after mTBI that have utility for patient selection and treatment response in clinical trials. Continued technological advances in the sensitivity, specificity, and precision of diffusion magnetic resonance imaging hold promise for routine clinical application in mTBI.Item High-Sensitivity C-Reactive Protein is a Prognostic Biomarker of Six-Month Disability after Traumatic Brain Injury: Results from the TRACK-TBI Study(Mary Ann Liebert, 2021) Xu, Linda B.; Yue, John K.; Korley, Frederick; Puccio, Ava M.; Yuh, Esther L.; Sun, Xiaoying; Rabinowitz, Miri; Vassar, Mary J.; Taylor, Sabrina R.; Winkler, Ethan A.; Puffer, Ross C.; Deng, Hansen; McCrea, Michael; Stein, Murray B.; Robertson, Claudia S.; Levin, Harvey S.; Dikmen, Sureyya; Temkin, Nancy R.; Giacino, Joseph T.; Mukherjee, Pratik; Wang, Kevin K. W.; Okonkwo, David O.; Markowitz, Amy J.; Jain, Sonia; Manley, Geoffrey T.; Diaz-Arrastia, Ramon; TRACK-TBI Investigators; Psychiatry, School of MedicineSystemic inflammation impacts outcome after traumatic brain injury (TBI), but most TBI biomarker studies have focused on brain-specific proteins. C-reactive protein (CRP) is a widely used biomarker of inflammation with potential as a prognostic biomarker after TBI. The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study prospectively enrolled TBI patients within 24 h of injury, as well as orthopedic injury and uninjured controls; biospecimens were collected at enrollment. A subset of hospitalized participants had blood collected on day 3, day 5, and 2 weeks. High-sensitivity CRP (hsCRP) and glial fibrillary acidic protein (GFAP) were measured. Receiver operating characteristic analysis was used to evaluate the prognostic ability of hsCRP for 6-month outcome, using the Glasgow Outcome Scale-Extended (GOSE). We included 1206 TBI subjects, 122 orthopedic trauma controls (OTCs), and 209 healthy controls (HCs). Longitudinal biomarker sampling was performed in 254 hospitalized TBI subjects and 19 OTCs. hsCRP rose between days 1 and 5 for TBI and OTC subjects, and fell by 2 weeks, but remained elevated compared with HCs (p < 0.001). Longitudinally, hsCRP was significantly higher in the first 2 weeks for subjects with death/severe disability (GOSE <5) compared with those with moderate disability/good recovery (GOSE ≥5); AUC was highest at 2 weeks (AUC = 0.892). Combining hsCRP and GFAP at 2 weeks produced AUC = 0.939 for prediction of disability. Serum hsCRP measured within 2 weeks of TBI is a prognostic biomarker for disability 6 months later. hsCRP may have utility as a biomarker of target engagement for anti-inflammatory therapies.Item Smaller Regional Brain Volumes Predict Posttraumatic Stress Disorder at 3 Months after Mild Traumatic Brain Injury(Elsevier, 2021) Stein, Murray B.; Yuh, Esther; Jain, Sonia; Okonkwo, David O.; Mac Donald, Christine L.; Levin, Harvey; Giacino, Joseph T.; Dikmen, Sureyya; Vassar, Mary J.; Diaz-Arrastia, Ramon; Robertson, Claudia S.; Nelson, Lindsay D.; McCrea, Michael; Sun, Xiaoying; Temkin, Nancy; Taylor, Sabrina R.; Markowitz, Amy J.; Manley, Geoffrey T.; Mukherjee, Pratik; TRACK-TBI Investigators; Psychiatry, School of MedicineBackground: Brain volumes in regions such as the hippocampus and amygdala have been associated with risk for the development of posttraumatic stress disorder (PTSD). The objective of this study was to determine whether a set of regional brain volumes, measured by magnetic resonance imaging at 2 weeks following mild traumatic brain injury, were predictive of PTSD at 3 and 6 months after injury. Methods: Using data from TRACK-TBI (Transforming Research and Clinical Knowledge in TBI), we included patients (N = 421) with Glasgow Coma Scale scores 13-15 assessed after evaluation in the emergency department and at 2 weeks, 3 months, and 6 months after injury. Probable PTSD diagnosis (PTSD Checklist for DSM-5 score, ≥33) was the outcome. FreeSurfer 6.0 was used to perform volumetric analysis of three-dimensional T1-weighted magnetic resonance images at 3T obtained 2 weeks post injury. Brain regions selected a priori for volumetric analyses were insula, hippocampus, amygdala, superior frontal cortex, rostral and caudal anterior cingulate, and lateral and medial orbitofrontal cortices. Results: Overall, 77 (18.3%) and 70 (16.6%) patients had probable PTSD at 3 and 6 months. A composite volume derived as the first principal component incorporating 73.8% of the variance in insula, superior frontal cortex, and rostral and caudal cingulate contributed to the prediction of 3-month (but not 6-month) PTSD in multivariable models incorporating other established risk factors. Conclusions: Results, while needing replication, provide support for a brain reserve hypothesis of PTSD and proof of principle for how prediction of at-risk individuals might be accomplished to enhance prognostic accuracy and enrich clinical prevention trials for individuals at the highest risk of PTSD following mild traumatic brain injury.