- Browse by Author
Browsing by Author "Vashishth, Deepak"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Bisphosphonate Treatment Modifies Canine Bone Mineral and Matrix Properties and their Heterogeneity(2010-03) Gourion-Arsiquaud, Samuel; Allen, Matthew R.; Burr, David B.; Vashishth, Deepak; Tang, Simon Y; Boskey, Adele LBone loss and alterations in bone quality are major causes leading to bone fragility in postmenopausal women. Although bisphosphonates are well known to reduce bone turnover and prevent bone loss in postmenopausal osteoporosis, their effects on other bone properties are not fully characterized. Changes in bone mineral and matrix properties may contribute to the anti-fracture efficacy observed with bisphosphonate treatments. The aim of this work was to analyze the effect of a 1-year treatment with either alendronate or risedronate, at low and high doses, on spatially resolved bone material and compositional properties that could contribute to the fracture efficacy of these agents. Distal tibias from 30 normal beagles that had been treated daily for 1 year with oral doses of vehicle (Veh), alendronate (Aln) at 0.2 or 1 mg/kg, and risedronate (Ris) at 0.1 or 0.5 mg/kg were analyzed by Fourier Transform Infrared imaging (FTIRI) to assess the changes in both mineral and matrix properties in discrete bone areas. The widths at half maximum of the pixel histograms for each FTIRI parameter were used to assess the heterogeneity of the bone tissue. Aln and Ris increased the mineral content and the collagen maturity mainly in cancellous bone and at the endocortical surface. Significant differences were observed in the mineral content and in the hydroxyapatite crystallinity distribution in bone tissue, which can contribute to reduced ductility and micro-crack accumulation. No significant differences were observed between low and high dose nor between Aln and Ris treatments. These results show that pharmacologic suppression of bone turnover increases the mineral and matrix bone tissue maturity in normal cancellous and endocortical bone areas where bone turnover is higher. These positive effects for decreased fracture risk are also associated with a loss of bone heterogeneity that could be one factor contributing to increased bone tissue brittleness and micro-crack accumulation.Item Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate(2009-06) Tang, SY; Allen, Matthew R.; Phipps, R; Burr, David B.; Vashishth, DeepakSummary One year of high-dose bisphosphonate (BPs) therapy in dogs allowed the increased accumulation of advanced glycation end-products (AGEs) and reduced postyield work-to-fracture of the cortical bone matrix. The increased accumulation of AGEs in these tissues may help explain altered bone matrix quality due to the administration of BPs in animal models Introduction Non-enzymatic glycation (NEG) is a posttranslational modification of the organic matrix that results in the formation of advanced glycation end-products (AGEs). In bone, the accumulation of AGEs play an important role in determining fracture resistance, and elevated levels of AGEs have been shown to adversely affect the bone’s propensity to brittle fracture. It was thus hypothesized that the suppression of tissue turnover in cortical bone due to the administration of bisphosphonates would cause increased accumulation of AGEs and result in a more brittle bone matrix. Methods Using a canine animal model (n = 12), we administered daily doses of a saline vehicle (VEH), alendronate (ALN 0.20, 1.00 mg/kg) or risedronate (RIS 0.10, 0.50 mg/kg). After a 1-year treatment, the mechanical properties, intracortical bone turnover, and the degree of nonenzymatic cross-linking of the organic matrix were measured from the tibial cortical bone tissue of these animals. Results There was a significant accumulation of AGEs at high treatment doses (+49 to + 86%; p < 0.001), but not at doses equivalent to those used for the treatment of postmenopausal osteoporosis, compared to vehicle. Likewise, postyield work-to-fracture of the tissue was significantly reduced at these high doses (−28% to −51%; p < 0.001) compared to VEH. AGE accumulation inversely correlated with postyield work-to-fracture (r 2 = 0.45; p < 0.001), suggesting that increased AGEs may contribute to a more brittle bone matrix. Conclusion High doses of bisphosphonates result in the accumulation of AGEs and a reduction in energy absorption of cortical bone. The increased accumulation of AGEs in these tissues may help explain altered bone matrix quality due to the administration of BPs in animal models.Item Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality(APS, 2019) Shao, Yu; Wichern, Emily; Childress, Paul J.; Adaway, Michele; Misra, Jagannath; Klunk, Angela; Burr, David B.; Wek, Ronald C.; Mosley, Amber L.; Liu, Yunlong; Robling, Alexander G.; Brustovetsky, Nickolay; Hamilton, James; Jacobs, Kylie; Vashishth, Deepak; Stayrook, Keith R.; Allen, Matthew R.; Wallace, Joseph M.; Bidwell, Joseph P.; Anatomy and Cell Biology, IU School of MedicineA goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor Nuclear Matrix Protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared to wild type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyper-anabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion- a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. Expression of matrix genes that contribute to bone material-level mechanical properties were elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality.Item NMP4, An Arbiter of Bone Cell Secretory Capacity And Regulator of Skeletal Response to PTH Therapy(Springer, 2023) Korff, Crystal; Atkinson, Emily; Adaway, Michele; Klunk, Angela; Wek, Ronald C.; Vashishth, Deepak; Wallace, Joseph M.; Anderson-Baucum, Emily K.; Evans-Molina, Carmella; Robling, Alexander G.; Bidwell, Joseph P.; Medical and Molecular Genetics, School of MedicineThe skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease.