- Browse by Author
Browsing by Author "Vargo-Gogola, Tracy"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Bisphosphonate-Functionalized Gold Nanoparticles for Contrast-Enhanced X-Ray Detection of Breast Microcalcifications(Elsevier B.V., 2014-02) Cole, Lisa E.; Vargo-Gogola, Tracy; Roeder, Ryan K.; Department of Biochemistry & Molecular Biology, IU School of MedicineMicrocalcifications are one of the most common abnormalities detected by mammography for the diagnosis of breast cancer. However, the detection of microcalcifications and correct diagnosis of breast cancer are limited by the sensitivity and specificity of mammography. Therefore, the objective of this study was to investigate the potential of bisphosphonate-functionalized gold nanoparticles (BP-Au NPs) for contrast-enhanced radiographic detection of breast microcalcifications using two models of breast microcalcifications which allowed for precise control over levels of hydroxyapatite (HA) mineral within a low attenuating matrix. First, an in vitro imaging phantom was prepared with varying concentrations of HA uniformly dispersed in an agarose hydrogel. The X-ray attenuation of HA-agarose compositions labeled by BP-Au NPs was increased by up to 26 HU compared to unlabeled compositions for HA concentrations ranging from 1–10 mg/mL. Second, an ex vivo tissue model was developed to more closely mimic the heterogeneity of breast tissue by injecting varying concentrations of HA in a Matrigel carrier into murine mammary glands. The X-ray attenuation of HA-Matrigel compositions labeled by BP-Au NPs was increased by up to 289 HU compared to unlabeled compositions for HA concentrations ranging from 0.5–25 mg/mL, which included an HA concentration (0.5 mg/mL) that was otherwise undetectable by micro-computed tomography. Cumulatively, both models demonstrated the ability of BP-Au NPs to enhance contrast for radiographic detection of microcalcifications, including at a clinically-relevant imaging resolution. Therefore, BP-Au NPs may have potential to improve clinical detection of breast microcalcifications by mammography.Item Effects of bisphosphonate ligands and PEGylation on targeted delivery of gold nanoparticles for contrast-enhanced radiographic detection of breast microcalcifications(Elsevier, 2018) Cole, Lisa E.; McGinnity, Tracie L.; Irimata, Lisa E.; Vargo-Gogola, Tracy; Roeder, Ryan K.; Biochemistry and Molecular Biology, School of MedicineA preclinical murine model of hydroxyapatite (HA) breast microcalcifications (µcals), which are an important clinical biomarker for breast cancer detection, was used to investigate the independent effects of high affinity bisphosphonate (BP) ligands and a polyethylene glycol (PEG) spacer on targeted delivery of gold nanoparticles (Au NPs) for contrast-enhanced radiographic detection. The addition of BP ligands to PEGylated Au NPs (BP-PEG-Au NPs) resulted in five-fold greater binding affinity for targeting HA µcals, as expected, due to the strong binding affinity of BP ligands for calcium. Therefore, BP-PEG-Au NPs were able to target HA µcals in vivo after intramammary delivery, which enabled contrast-enhanced radiographic detection of µcals in both normal and radiographically dense mammary tissues similar to previous results for BP-Au NPs, while PEG-Au NPs did not. The addition of a PEG spacer between the BP targeting ligand and Au NP surface enabled improved in vivo clearance. PEG-Au NPs and BP-PEG-Au NPs were cleared from all mammary glands (MGs) and control MGs, respectively, within 24–48 h after intramammary delivery, while BP-Au NPs were not. PEGylated Au NPs were slowly cleared from MGs by lymphatic drainage and accumulated in the spleen. Histopathology revealed uptake of PEG-Au NPs and BP-PEG-Au NPs by macrophages in the spleen, liver, and MGs; there was no evidence of toxicity due to the accumulation of NPs in organs and tissues compared with untreated controls for up to 28 days after delivery.Item Overcoming Barriers to Providing Narrative Feedback in Pre-clinical Medical Education: Design and Implementation of a Comment Builder Tool(2023-04-28) Hoffman, Leslie A.; Shere, Helen; Bauer, Erich; Vargo-Gogola, TracyFormative feedback is an essential component of competency based medical education1. This feedback should be individualized, reinforce effective behaviors, and provide actionable strategies for improvement. In the first year Human Structure course at Indiana University School of Medicine (IUSM), students complete a two-part assignment to assess the Practice-Based Learning and Improvement competency. Faculty are expected to provide narrative feedback to students on the assignment; however, narrative feedback was not consistently provided to all students in prior years. To lower the barriers to providing feedback, a narrative comment builder tool was developed and implemented. Here we report our experiences with developing and implementing the tool and evaluating ongoing barriers to providing narrative feedback to students.Item P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells(MDPI, 2012-04-25) Hwang, Melissa; Peddibhotla, Sirisha; McHenry, Peter; Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy; Biochemistry and Molecular Biology, School of MedicineRho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis.