- Browse by Author
Browsing by Author "Vargas-Rodriguez, Oscar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Efficient suppression of premature termination codons with alanine by engineered chimeric pyrrolysine tRNAs(Oxford University Press, 2024) Awawdeh, Aya; Tapia, Alejandro; Alshawi, Sarah A.; Dawodu, Olabode; Gaier, Sarah A.; Specht, Caitlin; Beaudoin, Jean-Denis; Tharp, Jeffery M.; Vargas-Rodriguez, Oscar; Biochemistry and Molecular Biology, School of MedicineMutations that introduce premature termination codons (PTCs) within protein-coding genes are associated with incurable and severe genetic diseases. Many PTC-associated disorders are life-threatening and have no approved medical treatment options. Suppressor transfer RNAs (sup-tRNAs) with the capacity to translate PTCs represent a promising therapeutic strategy to treat these conditions; however, developing novel sup-tRNAs with high efficiency and specificity often requires extensive engineering and screening. Moreover, these efforts are not always successful at producing more efficient sup-tRNAs. Here we show that a pyrrolysine (Pyl) tRNA (tRNAPyl), which naturally translates the UAG stop codon, offers a favorable scaffold for developing sup-tRNAs that restore protein synthesis from PTC-containing genes. We created a series of rationally designed Pyl tRNAScaffold Suppressor-tRNAs (PASS-tRNAs) that are substrates of bacterial and human alanyl-tRNA synthetase. Using a PTC-containing fluorescent reporter gene, PASS-tRNAs restore protein synthesis to wild-type levels in bacterial cells. In human cells, PASS-tRNAs display robust and consistent PTC suppression in multiple reporter genes, including pathogenic mutations in the tumor suppressor gene BRCA1 associated with breast and ovarian cancer. Moreover, PTC suppression occurred with high codon specificity and no observed cellular dysregulation. Collectively, these results unveil a new class of sup-tRNAs with encouraging potential for tRNA-based therapeutic applications.Item Genetic Encoding of Three Distinct Noncanonical Amino Acids Using Reprogrammed Initiator and Nonsense Codons(American Chemical Society, 2021) Tharp, Jeffery M.; Vargas-Rodriguez, Oscar; Schepartz, Alanna; Söll, Dieter; Biochemistry and Molecular Biology, School of MedicineWe recently described an orthogonal initiator tRNA (itRNATy2) that can initiate protein synthesis with noncanonical amino acids (ncAAs) in response to the UAG nonsense codon. Here, we report that a mutant of itRNATy2 (itRNATy2AUA) can efficiently initiate translation in response to the UAU tyrosine codon, giving rise to proteins with an ncAA at their N-terminus. We show that, in cells expressing itRNATy2AUA, UAU can function as a dual-use codon that selectively encodes ncAAs at the initiating position and predominantly tyrosine at elongating positions. Using itRNATy2AUA, in conjunction with its cognate tyrosyl-tRNA synthetase and two mutually orthogonal pyrrolysyl-tRNA synthetases, we demonstrate that UAU can be reassigned along with UAG or UAA to encode two distinct ncAAs in the same protein. Furthermore, by engineering the substrate specificity of one of the pyrrolysyl-tRNA synthetases, we developed a triply orthogonal system that enables simultaneous reassignment of UAU, UAG, and UAA to produce proteins containing three distinct ncAAs at precisely defined sites. To showcase the utility of this system, we produced proteins containing two or three ncAAs, with unique bioorthogonal functional groups, and demonstrate that these proteins can be separately modified with multiple fluorescent probes.