- Browse by Author
Browsing by Author "Varahramyan, Kody"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item AFM-Based Nanofabrication: Modeling, Simulation, and Experimental Verification(Office of the Vice Chancellor for Research, 2013-04-05) Promyoo, Rapeepan; El-Mounayri, Hazim; Karingula, Varun Kumar; Varahramyan, KodyRecent developments in science and engineering have advanced the fabrication techniques for micro/ nanodevices. Among them, atomic force microscope (AFM) has already been used for nanomachining and fabrication of micro/nanodevices. In this paper, a computational model for AFM-based nanofabrication processes is being developed. Molecular Dynamics (MD) technique is used to model and simulate mechanical indentation and scratching at the nanoscale. The effects of AFM-tip radius and crystal orientation are investigated. The simulation is also used to study the effect of the AFM tip speed on the indentation force at the interface between the tip and the substrate/workpiece. The material deformation and indentation geometry are extracted from the final locations of atoms, which are displaced by the rigid indenter. Material properties including modulus of elasticity and hardness are estimated. It is found that properties vary significantly at the nanoscale. AFM is used to conduct actual nanoindentation and scratching, to validate the MD simulation. Qualitative agreement is found. Finally, AFM-based fabrication of nanochannels/nanofluidic devices is conducted using different applied forces, scratching length, and feed rate.Item AFM-Based Nanofabrication: Modeling, Simulation, and Experimental Verification(Office of the Vice Chancellor for Research, 2012-04-13) Promyoo, Rapeepan; El-Mounayri, Hazim; Varahramyan, KodyRecent developments in science and engineering have advanced the fabrication techniques for micro/nanodevices. Among them, atomic force microscope (AFM) has already been used for nanomachining and fabrication of micro/nanodevices. In this research, a multi-scale computational model for AFM-based nanofabrication processes is being developed. Molecular Dynamics (MD) technique was used to model and simulate mechanical indentation and scratching at the nanoscale. MD simulation represents itself as a viable alternative to the expensive traditional experimental approach, which can be used to study the effects of various indentation variables in a much more cost effective way. The effects of workpiece materials, AFM-tip materials, AFM-tip radius, as well as crystal ori entations were investigated. The simulation allows for prediction of the indentation forces at the interface between an indenter and a workpiece. Also, the MD simulation was used to study the effects of speed on the indentation force. The material deformation and indentation geometry are extracted based on the final locations of atoms, which are displaced by the rigid indenter. Material properties including modulus of elasticity and friction coefficient are presented. AFM was used to conduct actual indentation and scratching at the nanoscale, and provide measurements to validate the predictions from the MD simulation. Qualitative agreement was found between the simulation and actual AFM-based nanomachining.Item Breast Cancer Detection via Microwave Imaging(Office of the Vice Chancellor for Research, 2011-04-08) Reid, Joshua R.N.; Ghane, Parvin; Shrestha, Sudhir; Agarwal, Mangilal; Varahramyan, KodyBreast cancer is one of the major common diseases among women and takes about 40,000 lives every year. Early detection of breast cancer greatly increases the chance of survival. The norm for today’s detection of breast cancer consists of mammograms, magnetic resonance imaging (MRI), and ultrasonic examination. Unfortunately, the process is a fraction of completeness despite its feeling of discomfort, high cost, and exposure to ionizing radiation which poses cumulative side effects respectively. The present research investigates the efficiency and implementation of microwave imaging to be used in the detection of breast cancer. Microwave imaging (MWI) is a process that illuminates the breast with microwave signals, and receives and analyses scattered signals for breast cancer detection and imaging. The electromagnetic waves that are scattered within the breast provide information that are transmitted and received via microstrip patch antennas, providing an image of detected lesions. In the presented poster, design of a patch antenna and simulation results are presented. In the event of designing, the overall goal was to obtain a voltage standing wave ratio (VSWR) less than 2 at 2.4 GHz signal frequency. To receive the intended results, the dimensions and design of the microstrip patch were important factors given the substrate parameters. Currently, the project is in the prototyping stage for the validation of simulation results and further optimization and development of the antenna for microwave breast cancer detection and imaging applications.Item Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol(MDPI, 2017-03-15) Daneshkhah, Ali; Shrestha, Sudhir; Siegel, Amanda; Varahramyan, Kody; Agarwal, Mangilal; Electrical and Computer Engineering, School of Engineering and TechnologyTwo methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/carbon black (CB) composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO) layer or by treating with infrared (IR). In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC) or PEO dispersed in DEC (PEO/DEC) to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed.Item Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol(MDPI, 2017-03-15) Daneshkhah, Ali; Shrestha, Sudhir; Siegel, Amanda; Varahramyan, Kody; Agarwal, Mangilal; Mechanical Engineering, School of Engineering and TechnologyTwo methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/carbon black (CB) composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO) layer or by treating with infrared (IR). In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC) or PEO dispersed in DEC (PEO/DEC) to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed.Item Fabrication and analysis of CIGS nanoparticle-based thin film solar cells(2013-11-20) Ghane, Parvin; Varahramyan, Kody; Agarwal, Mangilal; Rizkalla, Maher E.; King, BrianFabrication and analysis of Copper Indium Gallium di-Selenide (CIGS) nanoparticles-based thin film solar cells are presented and discussed. This work explores non-traditional fabrication processes, such as spray-coating for the low-cost and highly-scalable production of CIGS-based solar cells. CIGS nanoparticles were synthesized and analyzed, thin CIGS films were spray-deposited using nanoparticle inks, and resulting films were used in low-cost fabrication of a set of CIGS solar cell devices. This synthesis method utilizes a chemical colloidal process resulting in the formation of nanoparticles with tunable band gap and size. Based on theoretical and experimental studies, 100 nm nanoparticles with an associated band gap of 1.33 eV were selected to achieve the desired film characteristics and device performances. Scanning electron microcopy (SEM) and size measurement instruments (Zetasizer) were used to study the size and shape of the nanoparticles. Electron dispersive spectroscopy (EDS) results confirmed the presence of the four elements, Copper (Cu), Indium (In), Gallium (Ga), and Selenium (Se) in the synthesized nanoparticles, while X-ray diffraction (XRD) results confirmed the tetragonal chalcopyrite crystal structure. The ultraviolet-visible-near infra-red (UV-Vis-NIR) spectrophotometry results of the nanoparticles depicted light absorbance characteristics with good overlap against the solar irradiance spectrum. The depositions of the nanoparticles were performed using spray-coating techniques. Nanoparticle ink dispersed in ethanol was sprayed using a simple airbrush tool. The thicknesses of the deposited films were controlled through variations in the deposition steps, substrate to spray-nozzle distance, size of the nozzle, and air pressure. Surface features and topology of the spray-deposited films were analyzed using atomic force microscopy (AFM). The deposited films were observed to be relatively uniform with a minimum thickness of 400 nm. Post-annealing of the films at various temperatures was studied for the photoelectric performance of the deposited films. Current density and voltage (J/V) characteristics were measured under light illumination after annealing at different temperatures. It was observed that the highest photoelectric effect resulted in annealing temperatures of 150-250 degree centigrade under air atmosphere. The developed CIGS films were implemented in solar cell devices that included Cadmium Sulfide (CdS) and Zinc Oxide (ZnO) layers. The CdS film served as the n-type layer to form a pn junction with the p-type CIGS layer. In a typical device, a 300 nm CdS layer was deposited through chemical bath deposition on a 1 $mu$m thick CIGS film. A thin layer of intrinsic ZnO was spray coated on the CdS film to prevent shorting with the top conductor layer, 1.5 μm spray-deposited aluminum doped ZnO layer. A set of fabricated devices were tested using a Keithley semiconductor characterization instrument and micromanipulator probe station. The highest measured device efficiency was 1.49%. The considered solar cell devices were simulated in ADEPT 2.0 solar cell simulator based on the given fabrication and experimental parameters. The simulation module developed was successfully calibrated with the experimental results. This module can be used for future development of the given work.Item FABRICATION OF A THIN FILM SOLAR CELLS USING LAYER BY LAYER (LBL) NANOASSEMBLY OF COPPER INDIUM GALLUIM SELENIUM (CIGS) NANOPARTICLES(Office of the Vice Chancellor for Research, 2012-04-13) Ghane, Parvin; Hemati, Azadeh; Shrestha, Sudhir; Agarwal, Mangilal; Varahramyan, KodyCopper Indium Gallium Selenium (CIGS), a p-type semiconductor material with a tunable band gap, has been broadly studied for high efficiency solar cells as a viable sustainable energy source. Production of CIGS nanoparticles gives the ability of fabricating thin, light, and flexible solar cells. However, the current fabrication technologies of such devices are still very costly. This poster presents the synthesis and functionalization of CIGS nanoparticles and proposes Layer-by-Layer (LbL) nanoassembly process, as a low cost method, to fabricate thin films for solar cell applications. The results show that the synthesized CIGS particles have 1.3 ev band gap and 30 nm diameter in av-erage. These particles were later coated with polymers to provide alternative opposite surface charges suitable for LbL process. Deposition of 20 layers of the particles on indium tinoxide (ITO) coated glass formed a thin film with 220 nm thickness. The measured current voltage (I-V) characteristic of the film gave resistivity of 7.9 MΩ.m in dark and 2.25 MΩ.m under light illumina-tion. A prototype solar cell made out of the film resulted in short circuit cur-rent density (JSC) of 0.3 mA/cm2 and open circuit voltage (VOC) of 0.7 V.Item LAYER BY LAYER NANOASSEMBLY OF COPPER INDIUM GALLIUM SELENIUM (CIGS) NANOPARTICLES FOR SOLAR CELL APPLICATION(2011-12) Hemati, Azadeh; El-Mounayri, Hazim; Agarwal, Mangilal; Varahramyan, KodyIn this research thesis, copper indium gallium selenium (CIGS) nanoparticles were synthesized from metal chlorides, functionalized to disperse in water, and further used in layer by layer (LbL) nanoassembly of CIGS films. CIGS nanoparticles were synthesized through the colloidal precipitation in an organic solvent. The peak and average sizes of the synthesized particles were measured to be 68 nm and 75 nm in chloroform, and 30 nm and 115 nm in water, respectively. Two methods were used to disperse the particle in water. In the first method the stabilizing agent oleylamine (OLA) was removed through multiple cleaning processes, and in the second method ligand exchange was performed with polystyrene sulfonate (PSS). Zeta potential of CIGS nanoparticles dispersed in water was measured to be +61 mV. The surface charge of the nanoparticles was reversed by raising the pH of the solution, which was measured to be −43.3 mV at 10.5 pH. In a separate process, the CIGS nanoparticles dispersed in water were coated with PSS. The resulting dispersion was observed to be stable and the surface charge was measured to be −56.9 mV. The LbL deposition process of CIGS nanoparticles was characterized by depositing thin films on quartz crystal microbalance (QCM). LbL depositions was conducted using (i) oppositely charged CIGS nanoparticles, (ii) positively charged CIGS nanoparticles and PSS, and (iii) PSS-coated CIGS (CIGS-PSS) and polyethyleneimine (PEI). The average thickness of each bi-layer of the above mentioned depositions were measured to be 2.2 nm, 1.37 nm, and 10.12 nm, respectively. The results from the QCM have been observed to be consistent with the film thickness results obtained from atomic force microscopy (AFM). Various immersion times versus thickness of the film were also studied. For electrical characterization, the CIGS films were deposited on indium tindioxide (ITO)-coated glass substrates. Current versus voltage (I/V) measurements were carried out for each of the films using the Keithley semiconductor characterization instruments and micromanipulator probing station. It was observed that the conductivity of the films was increased with the deposition of each additional layer. The I/V characteristics were also measured under the light illumination and after annealing to study the photovoltaic and annealing effects. It was observed that under light illumination, the resistivity of a 12-layer CIGS film decreased by 93% to 0.54 MΩ.m, and that of the same number of layers of PSS-coated CIGS and PEI film decreased by 60% to 0.97 MΩ.m under illumination. The resistivity of an 8-layer CIGS and PSS film decreased by 76.4% to 0.1 MΩ.m, and that of the same layers of PSS-coated CIGS and PEI decreased by 87% to 0.07 MΩ.m after annealing. The functionalized nanoparticles and the LbL CIGS films were implemented in the solar cell devices. Several configurations of CIGS films (p-type), and ZnO and CdS films (n-type) were considered. Poly(3,4-ethylenedioxythiophene) (PEDOT), molybdenum (Mo), and ITO were used as back contacts and ITO was used as front contact for all the devices. The devices were characterized the Keithley semiconductor characterization instruments and micromanipulator probing station. For a CIGS and n-ZnO films device with PEDOT as back contact and ITO as front contact, the current density at 0 V and under light illumination was measured to be 60 nA/cm2 and the power density was measured to be 0.018 nW/cm2. For a CIGS and CdS films device with ITO as both back and front contact, the current density at 0 V and under light illumination was measured to be 50 nA/cm2 and the power density was measured to be 0.01 nW/cm2. For a drop-casted CIGS and CdS films device with Mo as back contact and ITO as front contact, the current density of 50 nA/cm2 at 0 V and power density of 0.5 nW/cm2 under light illumination was measured. For the LbL CIGS and chemical bath deposited CdS films device with ITO as both back and front contact, the current density of 0.04 mA/cm2 at 0 V and power density of 1.6 μW/cm2 under light illumination was measured. Comparing to Device-III, an increase by 99% in the power density was observed by using the CIGS LbL film in the device structure. The novel aspects of this research include, (i) functionalization of the CIGS nanoparticles to disperse in water including coating with PSS, (ii) electrostatic LbL deposition of CIGS films using oppositely charged nanoparticles and polymers, and (iii) the utilization of the fabricated LbL CIGS films to develop solar cells. In addition, the n-type cadmium sulfide film (CdS) and zinc oxide (ZnO) buffer layer were also deposited through LbL process after the respective particles were functionalized with PSS coating in separate experiments.Item Layer-By-Layer Self-Assembly of CIGS Nanoparticles and Polymers for All-Solution Processable Low-Cost, High-Efficiency Solar Cells(Office of the Vice Chancellor for Research, 2013-04-05) Ho, Tung; Vittoe, Robert; Kakumanu, Namratha; Shrestha, Sudhir; Agarwal, Mangilal; Varahramyan, KodyThin film solar cells made from copper indium gallium selenide (CIGS) materials have shown great potentials of providing low cost, high efficiency panels viable for wide spread commercial usage. Layer-by-layer (LbL) self-assembly is a low-cost, versatile nanofilm deposition process, however introduces polymers in the nanoparticles films, which reduces charge transport thereby affecting solar cell efficiency. This research aims to study various polymer materials to replace currently used insulating polymers in LbL, such as poly(sodium-4-styrenesulfonate) (PSS) and polyethyenimine (PEI). This poster will present processes and results of CIGS nanoparticles synthesis using controlled heating of CuCl, InCl3, GaCl3, and Se in oleyamine; functionalization of the particles to disperse in organic and aqueous-based solvents for LbL; and initial outcomes of CIGS, polymers LbL film fabrication and characterization. The size distribution of synthesized nanoparticles cleaned through alternate suspension and precipitation in chloroform and ethanol shows a peak at 72 nm. Particles light absorption properties measured with ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy shows good spectrum coverage with band edge near 1100 nm. The X-ray diffraction (XRD) results of the particles confirms the composition and tetragonal chalcopyrite crystal structure of CIGS materials. Chemical-bath-deposition of cadmium sulfide (CdS) and spray-coating of zinc oxide (ZnO) films are used along with LbL absorbing film in realization of a solar cell device. The fabricated devices are tested using semiconductor characterization instrument.Item Learning at the Nano-level: Exploring the unseen and accounting for complexity in how (and why) secondary STEM teachers learn(Office of the Vice Chancellor for Research, 2014-04-11) Fore, Grant; Sorge, Brandon; Feldhaus, Charlie; Agarwal, Mangilal; Varahramyan, KodyThis study utilizes IUPUI’s Nanotechnology Discovery Academy (INDA) for secondary Science, Technology, Engineering and Math (STEM) teachers (n=13) as its starting point for exploring issues related to teacher learning and professional development (PD). Pilot data was collected as part of an evaluation of INDA during the summer of 2013. Teacher professional learning is often represented as the measurable change (e.g. content knowledge, pedagogical content knowledge, self-efficacy, etc.) that occurs via PD “best practices.” However, following constructivism, the processes of knowledge construction are complex, and what is learned — and, more importantly, how and why it is learned — is itself an assemblage of experiences oftentimes particular to the individual learner. Our preliminary findings suggest that while teacher perceptions of their pedagogical development and confidence may increase, their learning outcomes and subsequent practice take shape in relation to each individual’s teaching/learning history and the political and socioeconomic reality of their school. With teacher PD remaining an important focus of U.S. educational policy, it is important to correctly characterize the emergent outcomes of PD interventions to better understand how teachers learn, what constrains their learning and practice, and how teacher professional learning can, in turn, be mobilized to empower both teachers and their students.