ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Uytingco, Cedric R."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Mks6 mutations reveal tissue- and cell type-specific roles for the cilia transition zone
    (Federation of American Society of Experimental Biology (FASEB), 2019-01) Lewis, Wesley R.; Bales, Katie L.; Revell, Dustin Z.; Croyle, Mandy J.; Engle, Staci E.; Song, Cheng Jack; Malarkey, Erik B.; Uytingco, Cedric R.; Shan, Dan; Antonellis, Patrick J.; Nagy, Tim R.; Kesterson, Robert A.; Mrug, Michal M.; Martens, Jeffrey R.; Berbari, Nicolas F.; Gross, Alecia K.; Yoder, Bradley K.; Biology, School of Science
    The transition zone (TZ) is a domain at the base of the cilium that is involved in maintaining ciliary compartment-specific sensory and signaling activity by regulating cilia protein composition. Mutations in TZ proteins result in cilia dysfunction, often causing pleiotropic effects observed in a group of human diseases classified as ciliopathies. The purpose of this study is to describe the importance of the TZ component Meckel-Grüber syndrome 6 (Mks6) in several organ systems and tissues regarding ciliogenesis and cilia maintenance using congenital and conditional mutant mouse models. Similar to MKS, congenital loss of Mks6 is embryonic lethal, displaying cilia loss and altered cytoskeletal microtubule modifications but only in specific cell types. Conditional Mks6 mutants have a variable cystic kidney phenotype along with severe retinal degeneration with mislocalization of phototransduction cascade proteins. However, other phenotypes, such as anosmia and obesity, which are typically associated with cilia and TZ dysfunction, were not evident. These data indicate that despite Mks6 being a core TZ component, it has tissue- or cell type-specific functions important for cilia formation and cilia sensory and signaling activities.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University