- Browse by Author
Browsing by Author "Ueoka, Akira"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Simultaneous activation of the small conductance calcium-activated potassium current by acetylcholine and inhibition of sodium current by ajmaline cause J-wave syndrome in Langendorff-perfused rabbit ventricles(Elsevier, 2021) Fei, Yu-Dong; Chen, Mu; Guo, Shuai; Ueoka, Akira; Chen, Zhenhui; Rubart-von der Lohe, Michael; Everett, Thomas H., IV.; Qu, Zhilin; Weiss, James N.; Chen, Peng-Sheng; Medicine, School of MedicineBackground: Concomitant apamin-sensitive small conductance calcium-activated potassium current (IKAS) activation and sodium current inhibition induce J-wave syndrome (JWS) in rabbit hearts. Sudden death in JWS occurs predominantly in men at night when parasympathetic tone is strong. Objective: The purpose of this study was to test the hypotheses that acetylcholine (ACh), the parasympathetic transmitter, activates IKAS and causes JWS in the presence of ajmaline. Methods: We performed optical mapping in Langendorff-perfused rabbit hearts and whole-cell voltage clamp to determine IKAS in isolated ventricular cardiomyocytes. Results: ACh (1 μM) + ajmaline (2 μM) induced J-point elevations in all (6 male and 6 female) hearts from 0.01± 0.01 to 0.31 ± 0.05 mV (P<.001), which were reduced by apamin (specific IKAS inhibitor, 100 nM) to 0.14 ± 0.02 mV (P<.001). More J-point elevation was noted in male than in female hearts (P=.037). Patch clamp studies showed that ACh significantly (P<.001) activated IKAS in isolated male but not in female ventricular myocytes (n=8). Optical mapping studies showed that ACh induced action potential duration (APD) heterogeneity, which was more significant in right than in left ventricles. Apamin in the presence of ACh prolonged both APD at the level of 25% (P<.001) and APD at the level of 80% (P<.001) and attenuated APD heterogeneity. Ajmaline further increased APD heterogeneity induced by ACh. Ventricular arrhythmias were induced in 6 of 6 male and 1 of 6 female hearts (P=.015) in the presence of ACh and ajmaline, which was significantly suppressed by apamin in the former. Conclusion: ACh activates ventricular IKAS. ACh and ajmaline induce JWS and facilitate the induction of ventricular arrhythmias more in male than in female ventricles.Item Testosterone does not shorten action potential duration in Langendorff perfused rabbit ventricles(Elsevier, 2023-10) Ueoka, Akira; Sung, Yen-Ling; Liu, Xiao; Rosenberg, Carine; Chen, Zhenhui; Everett, Thomas H, IV; Rubart, Michael; Tisdale, James E.; Chen, Peng-Sheng; Pediatrics, School of MedicineBackground: Women have longer baseline QT intervals than men. Because previous studies showed that testosterone and 5α-dihydrotestosterone shorten the ventricular action potential duration (APD) in animal models, differential testosterone concentrations may account for the sex differences in QT interval. Objective: The purpose of this study was to test the hypothesis that testosterone shortens the APD in Langendorff-perfused rabbit ventricles. Methods: We performed optical mapping studies in hearts with or without testosterone administration. Acute studies included 26 hearts using 2 different protocols, including 17 without and 9 with atrioventricular (AV) block. For chronic studies, we implanted testosterone pellets subcutaneously in 7 female rabbits for 2-3 weeks before optical mapping studies during complete AV block. Six rabbits without pellet implantation served as controls. Results: The hearts in the acute studies were paced with a pacing cycle length (PCL) of 200-300 ms and mapped at baseline and after administration of 1 nM, 10 nM, 100 nM, and 3 μM of testosterone. There was no shortening of APD80 at any PCL. Instead, a lengthening of APD80 was noted at higher concentrations. There were no sex differences in testosterone responses. In chronic studies, heart rates were 136 ± 5 bpm before and 148 ± 9 bpm after (P = .10) while QTc intervals were 314 ± 9 ms before and 317 ± 99 ms after (P = .69) testosterone pellet implantation, respectively. Overall, ventricular APD80 in the pellet group was longer than in the control group at 300- to 700-ms PCL. Conclusion: Testosterone does not shorten ventricular repolarization in rabbit hearts.Item Testosterone does not shorten action potential duration in Langendorff-perfused rabbit ventricles(Elsevier, 2022-11) Ueoka, Akira; Sung, Yen-Ling; Liu , Xiao; Rosenberg, Carine; Chen, Zhenhui; Everett, Thomas H., IV; Rubart , Michael; Tisdale, James E.; Chen, Peng-Sheng; Medicine, School of MedicineBackground Women have longer baseline QT intervals than men. Because previous studies showed that testosterone and 5α-dihydrotestosterone shorten the ventricular action potential duration (APD) in animal models, differential testosterone concentrations may account for the sex differences in QT interval. Objective The purpose of this study was to test the hypothesis that testosterone shortens the APD in Langendorff-perfused rabbit ventricles. Methods We performed optical mapping studies in hearts with or without testosterone administration. Acute studies included 26 hearts using 2 different protocols, including 17 without and 9 with atrioventricular (AV) block. For chronic studies, we implanted testosterone pellets subcutaneously in 7 female rabbits for 2–3 weeks before optical mapping studies during complete AV block. Six rabbits without pellet implantation served as controls. Results The hearts in the acute studies were paced with a pacing cycle length (PCL) of 200–300 ms and mapped at baseline and after administration of 1 nM, 10 nM, 100 nM, and 3 μM of testosterone. There was no shortening of APD80 at any PCL. Instead, a lengthening of APD80 was noted at higher concentrations. There were no sex differences in testosterone responses. In chronic studies, heart rates were 136 ± 5 bpm before and 148 ± 9 bpm after (P = .10) while QTc intervals were 314 ± 9 ms before and 317 ± 99 ms after (P = .69) testosterone pellet implantation, respectively. Overall, ventricular APD80 in the pellet group was longer than in the control group at 300- to 700-ms PCL. Conclusion Testosterone does not shorten ventricular repolarization in rabbit hearts.