- Browse by Author
Browsing by Author "Twigg, Homer L., III"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis(Federation of American Societies for Experimental Biology, 2016-06) Gu, Hongmei; Fisher, Amanda J.; Mickler, Elizabeth A.; Duerson, Frank, III; Cummings, Oscar W.; Peters-Golden, Marc; Twigg, Homer L., III; Woodruff, Trent M.; Wilkes, David S.; Vittal, Ragini; Medicine, School of MedicineComplement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-β and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix synthesis, and the expression of their respective receptors. We investigated the role of C3aR and C5aR in lung fibrosis by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their receptors via pharmacologic and RNA interference interventions. Histopathologic examination revealed an arrest in disease progression and attenuated lung collagen deposition (Masson's trichrome, hydroxyproline, collagen type I α 1 chain, and collagen type I α 2 chain). Pharmacologic or RNA interference-specific interventions suppressed complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and active TGF-β1 systemically. C3aR/C5aR antagonists suppressed local mRNA expressions of tgfb2, tgfbr1/2, ltbp1/2, serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn Clinically, compared with pathologically normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the progression of fibrosis by attenuating local complement activation and TGF-β/bone morphologic protein signaling as well as restoring decorin, which suggests a promising therapeutic strategy for patients with IPF.-Gu, H., Fisher, A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M., Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.Item Effect of Advanced HIV Infection on the Respiratory Microbiome(ATS Journals, 2016-07-15) Twigg, Homer L., III; Knox, Kenneth S.; Zhou, Jin; Crothers, Kristina A.; Nelson, David E.; Toh, Evelyn; Day, Richard B.; Lin, Huaiying; Gao, Xiang; Dong, Qunfeng; Mi, Deming; Katz, Barry P.; Sodergren, Erica; Weinstock, George M.; Medicine, School of MedicineRATIONALE: Previous work found the lung microbiome in healthy subjects infected with HIV was similar to that in uninfected subjects. We hypothesized the lung microbiome from subjects infected with HIV with more advanced disease would differ from that of an uninfected control population. OBJECTIVES: To measure the lung microbiome in an HIV-infected population with advanced disease. METHODS: 16s RNA gene sequencing was performed on acellular bronchoalveolar lavage (BAL) fluid from 30 subjects infected with HIV with advanced disease (baseline mean CD4 count, 262 cells/mm(3)) before and up to 3 years after starting highly active antiretroviral therapy (HAART) and compared with 22 uninfected control subjects. MEASUREMENTS AND MAIN RESULTS: The lung microbiome in subjects infected with HIV with advanced disease demonstrated decreased alpha diversity (richness and diversity) and greater beta diversity compared with uninfected BAL. Differences improved with HAART, but still persisted up to 3 years after starting therapy. Population dispersion in the group infected with HIV was significantly greater than in the uninfected cohort and declined after treatment. There were differences in the relative abundance of some bacteria between the two groups at baseline and after 1 year of therapy. After 1 year on HAART, HIV BAL contained an increased abundance of Prevotella and Veillonella, bacteria previously associated with lung inflammation. CONCLUSIONS: The lung microbiome in subjects infected with HIV with advanced disease is altered compared with an uninfected population both in diversity and bacterial composition. Differences remain up to 3 years after starting HAART. We speculate an altered lung microbiome in HIV infection may contribute to chronic inflammation and lung complications seen in the HAART era.Item Exact Variance Component Tests for Longitudinal Microbiome Studies(Wiley, 2019-01-08) Zhai, Jing; Knox, Kenneth; Twigg, Homer L., III; Zhou, Hua; Zhou, Jin J.; Medicine, School of MedicineIn metagenomic studies, testing the association of microbiome composition and clinical outcomes translates to testing the nullity of variance components. Motivated by a lung HIV (human immunodeficiency virus) microbiome project, we study longitudinal microbiome data by variance component models with more than two variance components. Current testing strategies only apply to the models with exactly two variance components and when sample sizes are large. Therefore, they are not applicable to longitudinal microbiome studies. In this paper, we propose exact tests (score test, likelihood ratio test, and restricted likelihood ratio test) to (1) test the association of the overall microbiome composition in a longitudinal design and (2) detect the association of one specific microbiome cluster while adjusting for the effects from related clusters. Our approach combines the exact tests for null hypothesis with a single variance component with a strategy of reducing multiple variance components to a single one. Simulation studies demonstrate that our method has correct type I error rate and superior power compared to existing methods at small sample sizes and weak signals. Finally, we apply our method to a longitudinal pulmonary microbiome study of human immunodeficiency virus (HIV) infected patients and reveal two interesting genera Prevotella and Veillonella associated with forced vital capacity. Our findings shed lights on the impact of lung microbiome to HIV complexities. The method is implemented in the open source, high-performance computing language Julia and is freely available at https://github.com/JingZhai63/VCmicrobiome.Item HIV-Nef Protein Persists in the Lungs of Aviremic Patients with HIV and Induces Endothelial Cell Death(ATS, 2019-03) Chelvanambi, Sarvesh; Bogatcheva, Natalia V.; Bednorz, Mariola; Agarwal, Stuti; Maier, Bernhard; Alves, Nathan J.; Li, Wei; Syed, Farooq; Saber, Manal M.; Dahl, Noelle; Lu, Hongyan; Day, Richard B.; Smith, Patricia; Jolicoeur, Paul; Yu, Qigui; Dhillon, Navneet K.; Weissmann, Norbert; Twigg, Homer L., III; Clauss, Matthias; Medicine, School of MedicineIt remains a mystery why HIV-associated end-organ pathologies persist in the era of combined antiretroviral therapy (ART). One possible mechanism is the continued production of HIV-encoded proteins in latently HIV-infected T cells and macrophages. The proapoptotic protein HIV-Nef persists in the blood of ART-treated patients within extracellular vesicles (EVs) and peripheral blood mononuclear cells. Here we demonstrate that HIV-Nef is present in cells and EVs isolated from BAL of patients on ART. We hypothesize that HIV-Nef persistence in the lung induces endothelial apoptosis leading to endothelial dysfunction and further pulmonary vascular pathologies. The presence of HIV-Nef in patients with HIV correlates with the surface expression of the proapoptotic endothelial-monocyte–activating polypeptide II (EMAPII), which was implicated in progression of pulmonary emphysema via mechanisms involving endothelial cell death. HIV-Nef protein induces EMAPII surface expression in human embryonic kidney 293T cells, T cells, and human and mouse lung endothelial cells. HIV-Nef packages itself into EVs and increases the amount of EVs secreted from Nef-expressing T cells and Nef-transfected human embryonic kidney 293T cells. EVs from BAL of HIV+ patients and Nef-transfected cells induce apoptosis in lung microvascular endothelial cells by upregulating EMAPII surface expression in a PAK2-dependent fashion. Transgenic expression of HIV-Nef in vascular endothelial–cadherin+ endothelial cells leads to lung rarefaction, characterized by reduced alveoli and overall increase in lung inspiratory capacity. These changes occur concomitantly with lung endothelial cell apoptosis. Together, these data suggest that HIV-Nef induces endothelial cell apoptosis via an EMAPII-dependent mechanism that is sufficient to cause pulmonary vascular pathologies even in the absence of inflammation.Item Lung microbiome in human immunodeficiency virus infection(Elsevier, 2017-01) Twigg, Homer L., III; Weinstock, George M.; Knox, Kenneth S.; Medicine, School of MedicineThe lung microbiome plays a significant role in normal lung function and disease. Because microbial colonization is likely influenced by immunodeficiency, one would speculate that infection with human immunodeficiency virus (HIV) alters the lung microbiome. Furthermore, how this alteration might impact pulmonary complications now seen in HIV-infected patients on antiretroviral therapy (ART), which has shifted from opportunistic infections to diseases associated with chronic inflammation, is not known. There have been limited publications on the lung microbiome in HIV infection, many of them emanating from the Lung HIV Microbiome Project. Current evidence suggests that the lung microbiome in healthy HIV-infected individuals with preserved CD4 counts is similar to uninfected individuals. However, in individuals with more advanced disease, there is an altered alveolar microbiome characterized by a loss of richness and evenness (alpha diversity) within individuals. Furthermore, as a group the taxa making up the HIV-infected and uninfected lung microbiome are different (differences in beta diversity), and the HIV-infected population is more spread out (greater dispersion) than the uninfected population. These differences decline with ART, but even after effective therapy the alveolar microbiome in HIV-infected individuals contains increased amounts of signature bacteria, some of which have previously been associated with chronic lung inflammation. Furthermore, more recent investigations into the lung virome in HIV infection suggest that perturbations in lung viral communities also exist in HIV infection, and that these too are associated with evidence of lung inflammation. Thus, it is likely both microbiome and virome alterations in HIV infection contribute to lung inflammation in these individuals, which has important implications on the changing spectrum of pulmonary complications in patients living with HIVItem Mechanisms Underlying HIV Associated Non-infectious Lung Disease(Elsevier, 2017) Presti, Rachel M.; Flores, Sonia C.; Palmer, Brent E.; Atkinson, Jeffrey J.; Lesko, Catherine R.; Lau, Bryan; Fontenot, Andrew P.; Roman, Jesse; McDyer, John F.; Twigg, Homer L., III; Department of Medicine, IU School of MedicinePulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH.Item SARS-CoV-2 infection of human lung epithelial cells induces TMPRSS-mediated acute fibrin deposition(Springer Nature, 2023-10-11) Erickson, Rachel; Huang, Chang; Allen, Cameron; Ireland, Joanna; Roth, Gwynne; Zou, Zhongcheng; Lu, Jinghua; Lafont, Bernard A. P.; Garza, Nicole L.; Brumbaugh, Beniah; Zhao, Ming; Suzuki, Motoshi; Olano, Lisa; Brzostowski, Joseph; Fischer, Elizabeth R.; Twigg, Homer L., III; Johnson, Reed F.; Sun, Peter D.; Medicine, School of MedicineSevere COVID-associated lung injury is a major confounding factor of hospitalizations and death with no effective treatments. Here, we describe a non-classical fibrin clotting mechanism mediated by SARS-CoV-2 infected primary lung but not other susceptible epithelial cells. This infection-induced fibrin formation is observed in all variants of SARS-CoV-2 infections, and requires thrombin but is independent of tissue factor and other classical plasma coagulation factors. While prothrombin and fibrinogen levels are elevated in acute COVID BALF samples, fibrin clotting occurs only with the presence of viral infected but not uninfected lung epithelial cells. We suggest a viral-induced coagulation mechanism, in which prothrombin is activated by infection-induced transmembrane serine proteases, such as ST14 and TMPRSS11D, on NHBE cells. Our finding reveals the inefficiency of current plasma targeted anticoagulation therapy and suggests the need to develop a viral-induced ARDS animal model for treating respiratory airways with thrombin inhibitors.Item Serum proteomic analysis in esophagectomy patients with postoperative delirium: A Case-Control Study(Elsevier, 2024) Khan, Sikandar H.; Perkins, Anthony J.; Jawaid, Samreen; Wang, Sophia; Lindroth, Heidi; Schmitt, Rebecca E.; Doles, Jason; True, Jason D.; Gao, Sujuan; Caplan, Gideon A.; Twigg, Homer L., III; Kesler, Kenneth; Khan, Babar A.; Medicine, School of MedicineBackground: Postoperative delirium occurs in up to 80% of patients undergoing esophagectomy. We performed an exploratory proteomic analysis to identify protein pathways that may be associated with delirium post-esophagectomy. Objectives: Identify proteins associated with delirium and delirium severity in a younger and higher-risk surgical population. Methods: We performed a case-control study using blood samples collected from patients enrolled in a negative, randomized, double-blind clinical trial. English speaking adults aged 18 years or older, undergoing esophagectomy, who had blood samples obtained were included. Cases were defined by a positive delirium screen after surgery while controls were patients with negative delirium assessments. Delirium was assessed using Richmond Agitation Sedation Scale and Confusion Assessment Method for the Intensive Care Unit, and delirium severity was assessed by Delirium Rating Scale-Revised-98. Blood samples were collected pre-operatively and on post-operative day 1, and discovery proteomic analysis was performed. Between-group differences in median abundance ratios were reported using Wilcoxon-Mann-Whitney Odds (WMWodds1) test. Results: 52 (26 cases, 26 controls) patients were included in the study with a mean age of 64 (SD 9.6) years, 1.9% were females and 25% were African American. The median duration of delirium was 1 day (IQR: 1-2), and the median delirium/coma duration was 2.5 days (IQR: 2-4). Two proteins with greater relative abundance ratio in patients with delirium were: Coagulation factor IX (WMWodds: 1.89 95%CI: 1.0-4.2) and mannosyl-oligosaccharide 1,2-alpha-mannosidase (WMWodds: 2.4 95%CI: 1.03-9.9). Protein abundance ratios associated with mean delirium severity at postoperative day 1 were Complement C2 (Spearman rs = -0.31, 95%CI [-0.55, -0.02]) and Mannosyl-oligosaccharide 1,2-alpha-mannosidase (rs = 0.61, 95%CI = [0.29, 0.81]). Conclusions: We identified changes in proteins associated with coagulation, inflammation, and protein handling; larger, follow-up studies are needed to confirm our hypothesis-generating findings.Item Targeted metabolomics reveals plasma biomarkers and metabolic alterations of the aging process in healthy young and older adults(Springer, 2023) Jasbi, Paniz; Nikolich‑Žugich, Janko; Patterson, Jeffrey; Knox, Kenneth S.; Jin, Yan; Weinstock, George M.; Smith, Patricia; Twigg, Homer L., III; Gu, Haiwei; Medicine, School of MedicineWith the exponential growth in the older population in the coming years, many studies have aimed to further investigate potential biomarkers associated with the aging process and its incumbent morbidities. Age is the largest risk factor for chronic disease, likely due to younger individuals possessing more competent adaptive metabolic networks that result in overall health and homeostasis. With aging, physiological alterations occur throughout the metabolic system that contribute to functional decline. In this cross-sectional analysis, a targeted metabolomic approach was applied to investigate the plasma metabolome of young (21-40y; n = 75) and older adults (65y + ; n = 76). A corrected general linear model (GLM) was generated, with covariates of gender, BMI, and chronic condition score (CCS), to compare the metabolome of the two populations. Among the 109 targeted metabolites, those associated with impaired fatty acid metabolism in the older population were found to be most significant: palmitic acid (p < 0.001), 3-hexenedioic acid (p < 0.001), stearic acid (p = 0.005), and decanoylcarnitine (p = 0.036). Derivatives of amino acid metabolism, 1-methlyhistidine (p = 0.035) and methylhistamine (p = 0.027), were found to be increased in the younger population and several novel metabolites were identified, such as cadaverine (p = 0.034) and 4-ethylbenzoic acid (p = 0.029). Principal component analysis was conducted and highlighted a shift in the metabolome for both groups. Receiver operating characteristic analyses of partial least squares-discriminant analysis models showed the candidate markers to be more powerful indicators of age than chronic disease. Pathway and enrichment analyses uncovered several pathways and enzymes predicted to underlie the aging process, and an integrated hypothesis describing functional characteristics of the aging process was synthesized. Compared to older participants, the young group displayed greater abundance of metabolites related to lipid and nucleotide synthesis; older participants displayed decreased fatty acid oxidation and reduced tryptophan metabolism, relative to the young group. As a result, we offer a better understanding of the aging metabolome and potentially reveal new biomarkers and predicted mechanisms for future study.