- Browse by Author
Browsing by Author "Turner, Amy J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Characterization of Reference Materials for CYP3A4 and CYP3A5: A GeT-RM Collaborative Project(Elsevier, 2023) Gaedigk, Andrea; Boone, Erin C.; Turner, Amy J.; van Schaik, Ron H.N.; Cheranova, Dilyara; Wang, Wendy Y.; Broeckel, Ulrich; Granfield, Caitlin A.; Hodge, Jennelle C.; Ly, Reynold C.; Lynnes, Ty C.; Mitchell, Matthew W.; Moyer, Ann M.; Oliva, Jason; Kalman, Lisa V.; Medical and Molecular Genetics, School of MedicinePharmacogenetic testing for CYP3A4 is increasingly provided by clinical and research laboratories; however, only a limited number of quality control and reference materials are currently available for many of the CYP3A4 variants included in clinical tests. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program (GeT-RM), in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 30 DNA samples derived from Coriell cell lines for CYP3A4. Samples were distributed to five volunteer laboratories for genotyping using a variety of commercially available and laboratory-developed tests. Sanger and next-generation sequencing were also utilized by some of the laboratories. Whole-genome sequencing data from the 1000 Genomes Projects were utilized to inform genotype. Twenty CYP3A4 alleles were identified in the 30 samples characterized for CYP3A4: CYP3A4∗4, ∗5, ∗6, ∗7, ∗8, ∗9, ∗10, ∗11, ∗12, ∗15, ∗16, ∗18, ∗19, ∗20, ∗21, ∗22, ∗23, ∗24, ∗35, and a novel allele, CYP3A4∗38. Nineteen additional samples with preexisting data for CYP3A4 or CYP3A5 were re-analyzed to generate comprehensive reference material panels for these genes. These publicly available and well-characterized materials can be used to support the quality assurance and quality control programs of clinical laboratories performing clinical pharmacogenetic testing.Item PharmVar Tutorial on CYP2D6 Structural Variation Testing and Recommendations on Reporting(Wiley, 2023) Turner, Amy J.; Nofziger, Charity; Ramey, Bronwyn E.; Ly, Reynold C.; Bousman, Chad A.; Agúndez, José A. G.; Sangkuhl, Katrin; Whirl-Carrillo, Michelle; Vanoni, Simone; Dunnenberger, Henry M.; Ruano, Gualberto; Kennedy, Martin A.; Phillips, Michael S.; Hachad, Houda; Klein, Teri E.; Moyer, Ann M.; Gaedigk, Andrea; Medical and Molecular Genetics, School of MedicineThe Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the highly polymorphic human CYP2D6 gene locus and a comprehensive summary of structural variation. CYP2D6 contributes to the metabolism of numerous drugs and, thus, genetic variation in its gene impacts drug efficacy and safety. To accurately predict a patient's CYP2D6 phenotype, testing must include structural variants including gene deletions, duplications, hybrid genes, and combinations thereof. This tutorial offers a comprehensive overview of CYP2D6 structural variation, terms, and definitions, a review of methods suitable for their detection and characterization, and practical examples to address the lack of standards to describe CYP2D6 structural variants or any other pharmacogene. This PharmVar tutorial offers practical guidance on how to detect the many, often complex, structural variants, as well as recommends terms and definitions for clinical and research reporting. Uniform reporting is not only essential for electronic health record-keeping but also for accurate translation of a patient's genotype into phenotype which is typically utilized to guide drug therapy.