- Browse by Author
Browsing by Author "Tumbleson, Danika M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Correction of Craniofacial Deficits using Epigallocatechin-3’-gallate Treatment in a Down Syndrome Mouse Model(Office of the Vice Chancellor for Research, 2014-04-11) Tumbleson, Danika M.; Haley, Emily M.; Diallo, Mariyamou; Deitz, Samantha L.; Roper, Randall J.Down syndrome (DS) is caused by trisomy of human chromosome (HSA21). Individuals with DS display distinct craniofacial abnormalities including an undersized, dismorphic mandible which leads to difficulty with eating, breathing, and swallowing. Using the Ts65Dn DS mouse model (three copies of ~50% HSA21 homologs), we have traced the mandibular deficit to a neural crest cell (NCC) deficiency and reduction in first pharyngeal arch (PA1 or mandibular precursor) at embryonic day 9.5. Previous studies have shown that this deficit is caused when NCC fail to migrate from the neural tube to populate the PA1 and fail to proliferate in the PA1. At E9.5, Dyrk1A, a triplicated DS candidate gene, is overexpressed in the PA1 and may cause the NCC and PA1 deficits. We hypothesize that treatment of pregnant Ts65Dn mothers with Epigallocatechin-3’-gallate (EGCG), a known Dyrk1A inhibitor, will correct NCC deficits and rescue the undersized PA1 in trisomic E9.5 embryos. To test our hypothesis, we treated pregnant Ts65Dn mothers with EGCG, where embryos received treatment from either E7-E8 or E0-E9.5. Our preliminary study found variable increases in PA1 volume and NCC number between treatment regimens, with several treatment groups indicating EGCG treatment has the potential to rescue the NCC deficit in the mandibular precursor. We found an increase in NCC number and PA1 volume with E7-E8 EGCG treatment in 21-24 somite embryos from trisomic mothers and in euploid embryos from euploid mothers treated from E0-E9.5. With EGCG treatment, we also observed a decrease in the average somite number of embryos from trisomic mothers, but an increase in those mothers’ average litter size. This study is important because it helps define the specific dosage and timing of ECGC and how it may affect specific DS phenotypes. These findings provide preclinical testing for a potential therapy for craniofacial disorders linked to DS.Item Mandibular and Neural Crest Cell Deficits Seen in TsDn65 Down Syndrome Mouse Model Rescued By Green Tea Polyphenol, EGCG(Office of the Vice Chancellor for Research, 2013-04-05) Bose, Gracelyn C.; Novack, Rachel A.; Tumbleson, Danika M.; Chom, Alexis N.; Deitz, Samantha L.Down Syndrome (DS) is caused by trisomy of the human chromosome 21 (Hsa21) and occurs in ~1 of every 700 births. DS is distinguished by over 80 phenotypic abnormalities including skeletal deficits and craniofacial phenotypes characterized by a flattened skull, slanted eyes, and a smaller mandible. To study these abnormalities, we utilize the Ts65Dn DS mouse model containing a triplication of approximately half of the gene homologues found on Hsa21 and mirrors the skeletal and mandibular phenotypes observed in DS. In Ts65Dn mice, the origin of the mandibular deficits were traced to a reduction in size of the 1st branchial arch (BA1), the developmental precursor to the mandible, occurring at embryonic day 9.5 (E9.5). At E9.5, we observe a lack of proliferation and migration of neural crest cells (NCC) from the neural tube (NT) into the BA1, causing a reduced BA1. We hypothesize that an overexpression of Dyrk1a, a Hsa21 homologue, contributes to the mandibular deficit seen in E9.5 Ts65Dn embryos. We propose that EGCG, a green tea polyphenol, will inhibit DYRK1a activity, rescuing the BA1 deficit. To test our hypothesis, Ts65Dn mothers were treated with EGCG from E0-E9.5 and sacrificed to retrieve the E9.5 embryos. Our results from unbiased stereological assessments show that E0-E9.5 EGCG in vivo treatment has the potential to increase NCC number, BA1 volume, and embryo volume of trisomic embryos. This data provide preclinical testing for a potential therapy of DS craniofacial disorders, which may extend to treating bone deficits in DS and osteoporosis.Item Treatment and genetic analysis of craniofacial deficits associated with down syndrome(2014-12-12) Tumbleson, Danika M.; Roper, Randall J.; Belecky-Adams, Teri; Yost, Robert; Picard, RobertDown syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and occurs in ~1 of every 700 live births. Individuals with DS present craniofacial abnormalities, specifically an undersized, dysmorphic mandible which may lead to difficulty with eating, breathing, and speech. Using the Ts65Dn DS mouse model, which mirrors these phenotypes and contains three copies of ~50% Hsa21 homologues, our lab has traced the mandibular deficit to a neural crest cell (NCC) deficiency in the first pharyngeal arch (PA1 or mandibular precursor) at embryonic day 9.5 (E9.5). At E9.5, the PA1 is reduced in size and contains fewer cells due to fewer NCC populating the PA1 from the neural tube (NT) as well as reduced cellular proliferation in the PA1. We hypothesize that both the deficits in NCC migration and proliferation may cause the reduction in size of the PA1. To identify potential genetic mechanisms responsible for trisomic PA1 deficits, we generated RNA-sequence (RNA-seq) data from euploid and trisomic E9.25 NT and E9.5 PA1 (time points occurring before and after observed deficits) using a next-generation sequencing platform. Analysis of RNA-seq data revealed differential trisomic expression of 53 genes from E9.25 NT and 364 genes from E9.5 PA1, five of which are present in three copies in Ts65Dn. We also further analyzed the data to find that fewer alternative splicing events occur in trisomic tissues compared to euploid tissues and in PA1 tissue compared to NT tissue. In a subsequent study, to test gene-specific treatments to rescue PA1 deficits, we targeted Dyrk1A, an overexpressed DS candidate gene implicated in many DS phenotypes and predicted to cause the NCC and PA1 deficiencies. We hypothesize that treatment of pregnant Ts65Dn mothers with Epigallocatechin gallate (EGCG), a known Dyrk1A inhibitor, will correct NCC deficits and rescue the undersized PA1 in trisomic E9.5 embryos. To test our hypothesis, we treated pregnant Ts65Dn mothers with EGCG from either gestational day 7 (G7) to G8 or G0 to G9.5. Our study found an increase in PA1 volume and NCC number in trisomic E9.5 embryos after treatment on G7 and G8, but observed no significant improvements in NCC deficits following G0-G9.5 treatment. We also observed a developmental delay of embryos from trisomic mothers treated with EGCG from G0-G9.5. Together, these data show that timing and sufficient dosage of EGCG treatment is most effective during the developmental window the few days before NCC deficits arise, during G7 and G8, and may be ineffective or harmful when administered at earlier developmental time points. Together, the findings of both studies offer a better understanding of potential mechanisms altered by trisomy as well as preclinical evidence for EGCG as a potential prenatal therapy for craniofacial disorders linked to DS.Item Treatment with a Green Tea Polyphenol Corrects Craniofacial Deficits Associated with Down Syndrome(Office of the Vice Chancellor for Research, 2013-04-05) Tumbleson, Danika M.; Deitz, Samantha L.; Chom, Alexis N.; Bose, Gracelyn C.; Novack, Rachel A.; Roper, Randall J.Down syndrome (DS) is caused by trisomy of human chromosome 21 (HSA21). Individuals with DS present craniofacial abnormalities including an undersized, dismorphic mandible leading to difficulty with eating, breathing, and swallowing. Using the Ts65Dn DS mouse model (three copies of ~50% HSA21 homologs), we have traced the mandibular deficit to a neural crest cell (NCC) deficiency and reduction in first pharyngeal arch (PA1 or mandibular precursor) size at embryonic day 9.5. At E9.5, Dyrk1A, a triplicated DS candidate gene, is overexpressed and may cause the NCC and PA1 deficits. We hypothesize that treatment of pregnant Ts65Dn mothers with Epigallocatechin gallate (EGCG), a known Dyrk1A inhibitor, will correct NCC deficits and rescue the undersized PA1 in trisomic E9.5 embryos. To test our hypothesis, we treated pregnant Ts65Dn mothers with EGCG from either E7-E8 or E0-E9.5. Our preliminary study found an increase in PA1 volume and NCC number in trisomic E9.5 embryos after treatment, but observed differences between treatment regimens. Differential gene expression was also quantified in trisomic treated embryos. This preliminary data suggests EGCG treatment has the potential to rescue the mandibular phenotype caused by trisomy. These findings provide preclinical testing for a potential therapy for craniofacial disorders linked to DS.