- Browse by Author
Browsing by Author "Tulaczyk, Slawek"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Geophysical evidence for Holocene lake-level change in southern California (Dry Lake)(Wiley, 2010) Bird, Broxton W.; Kirby, Matthew E.; Howat, Ian M.; Tulaczyk, Slawek; Earth Sciences, School of ScienceGround penetrating radar (GPR) data are used in combination with previously published sediment cores to develop a Holocene history of basin sedimentation in a small, alpine lake in southern California (Dry Lake). The GPR data identify three depositional sequences spanning the past 9000 calendar years before present (cal. yr BP). Sequence I represents the first phase of an early Holocene highstand. A regression between <8320 and >8120 cal. yr BP separates Sequence I from Sequence II, perhaps associated with the 8200 cal. yr BP cold event. Sequence II represents the second phase of the early-to-mid Holocene highstand. Sequence IIIa represents a permanent shift to predominantly low lake stands beginning ∼5550 cal. yr BP. This mid-Holocene shift was accompanied by a dramatic decrease in sedimentation rate as well as a contraction of the basin's area of sedimentation. By ∼1860 cal. yr BP (Sequence IIIb), the lake was restricted to the modern, central basin. Taken together, the GPR and core data indicate a wet early Holocene followed by a long-term Holocene drying trend. The similarity in ages of the early Holocene highstand across the greater southern California region suggests a common external forcing – perhaps modulation of early Holocene storm activity by insolation. However, regional lake level records are less congruous following the initial early Holocene highstand, which may indicate a change in the spatial domain of climate forcing(s) throughout the Holocene in western North America.Item Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles(Springer, 2022-09-15) Piccione, Gavin; Blackburn, Terrence; Tulaczyk, Slawek; Rasbury, E. Troy; Hain, Mathis P.; Ibarra, Daniel E.; Methner, Katharina; Tinglof, Chloe; Cheney, Brandon; Northrup, Paul; Licht, Kathy; Earth and Environmental Sciences, School of ScienceIce cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state.