- Browse by Author
Browsing by Author "Tsuang, Debby"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Association of cerebrospinal fluid Aβ42 with A2M gene in cognitively normal subjects(Elsevier, 2014-02) Millard, Steven P.; Lutz, Franziska; Li, Ge; Galasko, Douglas R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby; Yu, Chang-En; Peskind, Elaine R.; Bekris, Lynn M.; Department of Neurology, IU School of MedicineLow cerebrospinal fluid (CSF) Aβ42 levels correlate with increased brain Aβ deposition in Alzheimer’s disease (AD), which suggests a disruption in the degradation and clearance of Aβ from the brain. In addition, APOE ε4 carriers have lower CSF Aβ42 levels than non-carriers. The hypothesis of this investigation was that CSF Aβ42 levels correlate with regulatory region variation in genes that are biologically associated with degradation or clearance of Aβ from the brain. CSF Aβ42 levels were tested for associations with Aβ degradation and clearance genes and APOE ε4. Twenty-four SNPs located within the 5′ and 3′ regions of 12 genes were analyzed. The study sample consisted of 99 AD patients and 168 cognitively normal control subjects. CSF Aβ42 levels were associated with APOE ε4 status in controls but not in AD patientsItem Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium(Alzheimer’s Association, 2022-09-22) de Erausquin, Gabriel A.; Snyder, Heather; Brugha, Traolach S.; Seshadri, Sudha; Carrillo, Maria; Sagar, Rajesh; Huang, Yueqin; Newton, Charles; Tartaglia, Carmela; Teunissen, Charlotte; Håkanson, Krister; Akinyemi, Rufus; Prasad, Kameshwar; D'Avossa, Giovanni; Gonzalez-Aleman, Gabriela; Hosseini, Akram; Vavougios, George D.; Sachdev, Perminder; Bankart, John; Ole Mors, Niels Peter; Lipton, Richard; Katz, Mindy; Fox, Peter T.; Katshu, Mohammad Zia; Iyengar, M. Sriram; Weinstein, Galit; Sohrabi, Hamid R.; Jenkins, Rachel; Stein, Dan J.; Hugon, Jacques; Mavreas, Venetsanos; Blangero, John; Cruchaga, Carlos; Krishna, Murali; Wadoo, Ovais; Becerra, Rodrigo; Zwir, Igor; Longstreth, William T.; Kroenenberg, Golo; Edison, Paul; Mukaetova-Ladinska, Elizabeta; Staufenberg, Ekkehart; Figueredo-Aguiar, Mariana; Yécora, Agustín; Vaca, Fabiana; Zamponi, Hernan P.; Lo Re, Vincenzina; Majid, Abdul; Sundarakumar, Jonas; Gonzalez, Hector M.; Geerlings, Mirjam I.; Skoog, Ingmar; Salmoiraghi, Alberto; Boneschi, Filippo Martinelli; Patel, Vibuthi N.; Santos, Juan M.; Arroyo, Guillermo Rivera; Moreno, Antonio Caballero; Felix, Pascal; Gallo, Carla; Arai, Hidenori; Yamada, Masahito; Iwatsubo, Takeshi; Sharma, Malveeka; Chakraborty, Nandini; Ferreccio, Catterina; Akena, Dickens; Brayne, Carol; Maestre, Gladys; Williams Blangero, Sarah; Brusco, Luis I.; Siddarth, Prabha; Hughes, Timothy M.; Ramírez Zuñiga, Alfredo; Kambeitz, Joseph; Laza, Agustin Ruiz; Allen, Norrina; Panos, Stella; Merrill, David; Ibáñez, Agustín; Tsuang, Debby; Valishvili, Nino; Shrestha, Srishti; Wang, Sophia; Padma, Vasantha; Anstey, Kaarin J.; Ravindrdanath, Vijayalakshmi; Blennow, Kaj; Mullins, Paul; Łojek, Emilia; Pria, Anand; Mosley, Thomas H.; Gowland, Penny; Girard, Timothy D.; Bowtell, Richard; Vahidy, Farhaan S.; Psychiatry, School of MedicineIntroduction: Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term. Methods: This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions. Results: Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe. Discussion: The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection. Key points: The following review describes what is known so far in terms of molecular and epidemiological links among COVID-19, the brain, neurological symptoms, and AD and related dementias (ADRD)The primary objective of this large-scale collaboration is to clarify the pathogenesis of ADRD and to advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive decline and other CNS sequelae. No available evidence supports the notion that cognitive impairment after SARS-CoV-2 infection is a form of dementia (ADRD or otherwise). The longitudinal methodologies espoused by the consortium are intended to provide data to answer this question as clearly as possible controlling for possible confounders. Our specific hypothesis is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory cortical network (EOCN) in older individuals with specific genetic susceptibility. The proposed harmonization strategies and flexible study designs offer the possibility to include large samples of under-represented racial and ethnic groups, creating a rich set of harmonized cohorts for future studies of the pathophysiology, determinants, long-term consequences, and trends in cognitive aging, ADRD, and vascular disease. We provide a framework for current and future studies to be carried out within the Consortium. and offers a "green paper" to the research community with a very broad, global base of support, on tools suitable for low- and middle-income countries aimed to compare and combine future longitudinal data on the topic. The Consortium proposes a combination of design and statistical methods as a means of approaching causal inference of the COVID-19 neuropsychiatric sequelae. We expect that deep phenotyping of neuropsychiatric sequelae may provide a series of candidate syndromes with phenomenological and biological characterization that can be further explored. By generating high-quality harmonized data across sites we aim to capture both descriptive and, where possible, causal associations.Item Polygenic risk score penetrance & recurrence risk in familial Alzheimer disease(Wiley, 2023) Qiao, Min; Lee, Annie J.; Reyes-Dumeyer, Dolly; Tosto, Giuseppe; Faber, Kelley; Goate, Alison; Renton, Alan; Chao, Michael; Boeve, Brad; Cruchaga, Carlos; Pericak-Vance, Margaret; Haines, Jonathan L.; Rosenberg, Roger; Tsuang, Debby; Sweet, Robert A.; Bennett, David A.; Wilson, Robert S.; Foroud, Tatiana; Mayeux, Richard; Vardarajan, Badri N.; Medical and Molecular Genetics, School of MedicineObjective: To compute penetrance and recurrence risk using a genome-wide PRS (including and excluding the APOE region) in families with Alzheimer's disease. Methods: Genotypes from the National Institute on Aging Late-Onset Alzheimer's Disease Family-Based Study and a study of familial Alzheimer's disease in Caribbean Hispanics were used to compute PRS with and without variants in the 2 MB region flanking APOE. PRS was calculated in using clumping/thresholding and Bayesian methods and was assessed for association with Alzheimer's disease and age at onset. Penetrance and recurrence risk for carriers in highest and lowest PRS quintiles were compared separately within APOE-ε4 carriers and non-carriers. Results: PRS excluding the APOE region was strongly associated with clinical and neuropathological diagnosis of AD. PRS association with AD was similar in participants who did not carry an APOE-ε4 allele (OR = 1.74 [1.53-1.91]) compared with APOE-ε4 carriers (1.53 [1.4-1.68]). Compared to the lowest quintile, the highest PRS quintile had a 10% higher penetrance at age 70 (p = 0.0006) and a 20% higher penetrance at age 80 (p < 10e-05). Stratifying by APOE-ε4 allele, PRS in the highest quintile was significantly more penetrant than the lowest quintile, both, within APOE-ε4 carriers (14.5% higher at age 80, p = 0.002) and non-carriers (26% higher at 80, p < 10e-05). Recurrence risk for siblings conferred by a co-sibling in the highest PRS quintile increased from 4% between the ages of 65-74 years to 39% at age 85 and older. Interpretation: PRS can be used to estimate penetrance and recurrence risk in familial Alzheimer's disease among carriers and non-carries of APOE-ε4.Item The National Institute on Aging Late-Onset Alzheimer’s Disease Family Based Study: A resource for genetic discovery(Wiley, 2022) Reyes-Dumeyer, Dolly; Faber, Kelley; Vardarajan, Badri; Goate, Alison; Renton, Alan; Chao, Michael; Boeve, Brad; Cruchaga, Carlos; Pericak-Vance, Margaret; Haines, Jonathan L.; Rosenberg, Roger; Tsuang, Debby; Sweet, Robert A.; Bennett, David A.; Wilson, Robert S.; Foroud, Tatiana; Mayeux, Richard; Medical and Molecular Genetics, School of MedicineIntroduction: The National Institute on Aging Late-Onset Alzheimer's Disease Family Based Study (NIA-LOAD FBS) was established to study the genetic etiology of Alzheimer's disease (AD). Methods: Recruitment focused on families with two living affected siblings and a third first-degree relative similar in age with or without dementia. Uniform assessments were completed, DNA was obtained, as was neuropathology, when possible. Apolipoprotein E (APOE) genotypes, genome-wide single nucleotide polymorphism (SNP) arrays, and sequencing was completed in most families. Results: APOE genotype modified the age-at-onset in many large families. Novel variants and known variants associated with early- and late-onset AD and frontotemporal dementia were identified supporting an international effort to solve AD genetics. Discussion: The NIA-LOAD FBS is the largest collection of familial AD worldwide, and data or samples have been included in 123 publications addressing the genetic etiology of AD. Genetic heterogeneity and variability in the age-at-onset provides opportunities to investigate the complexity of familial AD.