ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tryka, Kimberly A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Using PhenX Measures to Identify Opportunities for Cross-Study Analysis
    (Wiley, 2012) Pan, Huaqin; Tryka, Kimberly A.; Vreeman, Daniel J.; Huggins, Wayne; Phillips, Michael J.; Mehta, Jayashri P.; Phillips, Jacqueline H.; McDonald, Clement J.; Junkins, Heather A.; Ramos, Erin M.; Hamilton, Carol M.; Medicine, School of Medicine
    The PhenX Toolkit provides researchers with recommended, well-established, low-burden measures suitable for human subject research. The database of Genotypes and Phenotypes (dbGaP) is the data repository for a variety of studies funded by the National Institutes of Health, including genome-wide association studies. The dbGaP requires that investigators provide a data dictionary of study variables as part of the data submission process. Thus, dbGaP is a unique resource that can help investigators identify studies that share the same or similar variables. As a proof of concept, variables from 16 studies deposited in dbGaP were mapped to PhenX measures. Soon, investigators will be able to search dbGaP using PhenX variable identifiers and find comparable and related variables in these 16 studies. To enhance effective data exchange, PhenX measures, protocols, and variables were modeled in Logical Observation Identifiers Names and Codes (LOINC® ). PhenX domains and measures are also represented in the Cancer Data Standards Registry and Repository (caDSR). Associating PhenX measures with existing standards (LOINC® and caDSR) and mapping to dbGaP study variables extends the utility of these measures by revealing new opportunities for cross-study analysis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University