ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Truty, Rebecca"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cover, Volume 43, Issue 2
    (Wiley, 2022) Sarafrazi, Soodabeh; Daugherty, Sean C.; Miller, Nicole; Boada, Patrick; Carpenter, Thomas O.; Chunn, Lauren; Dill, Kariena; Econs, Michael J.; Eisenbeis, Scott; Imel, Erik A.; Johnson, Britt; Kiel, Mark J.; Krolczyk, Stan; Ramesan, Prameela; Truty, Rebecca; Sabbagh, Yves; Medicine, School of Medicine
    The cover image is based on the Research Article Novel PHEX gene locus-specific database: Comprehensive characterization of vast number of variants associated with X-linked hypophosphatemia (XLH) by Yves Sabbagh et al., https://doi.org/10.1002/humu.24296.
  • Loading...
    Thumbnail Image
    Item
    Novel PHEX gene locus-specific database: Comprehensive characterization of vast number of variants associated with X-linked hypophosphatemia (XLH)
    (Wiley, 2022) Sarafrazi, Soodabeh; Daugherty, Sean C.; Miller, Nicole; Boada, Patrick; Carpenter, Thomas O.; Chunn, Lauren; Dill, Kariena; Econs, Michael J.; Eisenbeis, Scott; Imel, Erik A.; Johnson, Britt; Kiel, Mark J.; Krolczyk, Stan; Ramesan, Prameela; Truty, Rebecca; Sabbagh, Yves; Medicine, School of Medicine
    X-linked hypophosphatemia (XLH), the most common form of hereditary hypophosphatemia, is caused by disrupting variants in the PHEX gene, located on the X chromosome. XLH is inherited in an X-linked pattern with complete penetrance observed for both males and females. Patients experience lifelong symptoms resulting from chronic hypophosphatemia, including impaired bone mineralization, skeletal deformities, growth retardation, and diminished quality of life. This chronic condition requires life-long management with disease-specific therapies, which can improve patient outcomes especially when initiated early in life. To centralize and disseminate PHEX variant information, we have established a new PHEX gene locus-specific database, PHEX LSDB. As of April 30, 2021, 870 unique PHEX variants, compiled from an older database of PHEX variants, a comprehensive literature search, a sponsored genetic testing program, and XLH clinical trials, are represented in the PHEX LSDB. This resource is publicly available on an interactive, searchable website (https://www.rarediseasegenes.com/), which includes a table of variants and associated data, graphical/tabular outputs of genotype-phenotype analyses, and an online submission form for reporting new PHEX variants. The database will be updated regularly with new variants submitted on the website, identified in the published literature, or shared from genetic testing programs.
  • Loading...
    Thumbnail Image
    Item
    The global prevalence and ethnic heterogeneity of primary ciliary dyskinesia gene variants: a genetic database analysis
    (Elsevier, 2022) Hannah, William B.; Seifert, Bryce A.; Truty, Rebecca; Zariwala, Maimoona A.; Ameel, Kristen; Zhao, Yi; Nykamp, Keith; Gaston, Benjamin; Biostatistics and Health Data Science, School of Medicine
    Background: Primary ciliary dyskinesia (PCD) is a motile ciliopathy characterised by otosinopulmonary infections. Inheritance is commonly autosomal recessive, with extensive locus and allelic heterogeneity. The prevalence is uncertain. Most genetic studies have been done in North America or Europe. The aim of the study was to estimate the worldwide prevalence and ethnic heterogeneity of PCD. Methods: We calculated the allele frequency of disease-causing variants in 29 PCD genes associated with autosomal recessive inheritance in 182 681 unique individuals to estimate the global prevalence of PCD in seven ethnicities (African or African American, Latino, Ashkenazi Jewish, Finnish, non-Finnish European, east Asian, and south Asian). We began by aggregating variants that had been interpreted by Invitae, San Francisco, CA, USA, a genetics laboratory with PCD expertise. We then determined the allele frequency of each variant (pathogenic, likely pathogenic, or variant of uncertain significance [VUS]) in the Genome Aggregation Database (gnomAD), a publicly available next-generation sequencing database that aggregates exome and genome sequencing information from a wide variety of large-scale projects and stratifies allele counts by ethnicity. Using the Hardy-Weinberg equilibrium equation, we were able to calculate a lower-end prevalence of PCD for each ethnicity by including only pathogenic and likely pathogenic variants; and upper-end prevalence by also including VUS. This approach was similar to previous work on Li-Fraumeni (TP53 variants) prevalence. We were not diagnosing PCD, but rather estimating prevalence based on known variants. Findings: The overall minimum global prevalence of PCD is calculated to be at least one in 7554 individuals, although this is likely to be an underestimate because some variants currently classified as VUS might be disease-causing and some pathogenic variants might not be detected by our methods. In the overall cohort, Invitae data could be included for variants without gnomAD data for a primary ethnicity. When using only gnomAD allele frequencies to calculate prevalence in individual ethnicities, the estimated prevalence of PCD was lower in each ethnicity compared with the overall cohort. This is because the overall cohort includes additional data from the Invitae database such as copy number variants and other variants not present in gnomAD. With gnomAD we found the expected PCD frequency to be higher in individuals of African ancestry than in most other populations (excluding VUS: 1 in 9906 in African or African American vs 1 in 10 388 in non-Finnish European vs 1 in 14 606 in east Asian vs 1 in 16 309 in Latino; including VUS: 1 in 106 in African or African American vs 1 in 178 in non-Finnish European vs 1 in 196 in Latino vs 1 in 188 in east Asian). In addition, we found that the top 5 genes most commonly implicated in PCD differed across ethnic ancestries and contrasted commonly published findings. Interpretation: PCD appears to be more common than has been recognised, particularly in individuals of African ancestry. We identified gene distributions that differ from those in previous European and North American studies. These results could have an international impact on case identification. Our analytic approach can be expanded as more PCD loci are identified, and could be adapted to study the prevalence of other inherited diseases.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University