- Browse by Author
Browsing by Author "Treece, Amy"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Alkaline Phosphatase Treatment of Acute Kidney Injury in an Infant Piglet Model of Cardiopulmonary Bypass with Deep Hypothermic Circulatory Arrest(Springer Nature, 2019-10-02) Davidson, Jesse A.; Khailova, Ludmila; Treece, Amy; Robison, Justin; Soranno, Danielle E.; Jaggers, James; Ing, Richard J.; Lawson, Scott; Osorio Lujan, Suzanne; Pediatrics, School of MedicineAcute kidney injury (AKI) is associated with prolonged hospitalization and mortality following infant cardiac surgery, but therapeutic options are limited. Alkaline phosphatase (AP) infusion reduced AKI in phase 2 sepsis trials but has not been evaluated for cardiac surgery-induced AKI. We developed a porcine model of infant cardiopulmonary bypass (CPB) with deep hypothermic circulatory arrest (DHCA) to investigate post-CPB/DHCA AKI, measure serum/renal tissue AP activity with escalating doses of AP infusion, and provide preliminary assessment of AP infusion for prevention of AKI. Infant pigs underwent CPB with DHCA followed by survival for 4 h. Groups were treated with escalating doses of bovine intestinal AP (1, 5, or 25U/kg/hr). Anesthesia controls were mechanically ventilated for 7 h without CPB. CPB/DHCA animals demonstrated histologic and biomarker evidence of AKI as well as decreased serum and renal tissue AP compared to anesthesia controls. Only high dose AP infusion significantly increased serum or renal tissue AP activity. Preliminary efficacy evaluation demonstrated a trend towards decreased AKI in the high dose AP group. The results of this dose-finding study indicate that AP infusion at the dose of 25U/kg/hr corrects serum and tissue AP deficiency and may prevent AKI in this piglet model of infant CPB/DHCA.Item Metabolomic profiling demonstrates evidence for kidney and urine metabolic dysregulation in a piglet model of cardiac surgery-induced acute kidney injury(American Physiological Society, 2022-07-01) Davidson, Jesse A.; Robison, Justin; Khailova, Ludmila; Frank, Benjamin S.; Jaggers, James; Ing, Richard J.; Lawson, Scott; Iguidbashian, John; Ali, Eiman; Treece, Amy; Soranno, Danielle E.; Osorio-Lujan, Suzanne; Klawitter, Jelena; Pediatrics, School of MedicineAcute kidney injury (AKI) is a common cause of morbidity after congenital heart disease surgery. Progress on diagnosis and therapy remains limited, however, in part due to poor mechanistic understanding and a lack of relevant translational models. Metabolomic approaches could help identify novel mechanisms of injury and potential therapeutic targets. In the present study, we used a piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest (CPB/DHCA) and targeted metabolic profiling of kidney tissue, urine, and serum to evaluate metabolic changes specific to animals with histological acute kidney injury. CPB/DHCA animals with acute kidney injury were compared with those without acute kidney injury and mechanically ventilated controls. Acute kidney injury occurred in 10 of 20 CPB/DHCA animals 4 h after CPB/DHCA and 0 of 7 control animals. Injured kidneys showed a distinct tissue metabolic profile compared with uninjured kidneys (R2 = 0.93, Q2 = 0.53), with evidence of dysregulated tryptophan and purine metabolism. Nine urine metabolites differed significantly in animals with acute kidney injury with a pattern suggestive of increased aerobic glycolysis. Dysregulated metabolites in kidney tissue and urine did not overlap. CPB/DHCA strongly affected the serum metabolic profile, with only one metabolite that differed significantly with acute kidney injury (pyroglutamic acid, a marker of oxidative stress). In conclusion, based on these findings, kidney tryptophan and purine metabolism are candidates for further mechanistic and therapeutic investigation. Urine biomarkers of aerobic glycolysis could help diagnose early acute kidney injury after CPB/DHCA and warrant further evaluation. The serum metabolites measured at this early time point did not strongly differentiate based on acute kidney injury.NEW & NOTEWORTHY This project explored the metabolic underpinnings of postoperative acute kidney injury (AKI) following pediatric cardiac surgery in a translationally relevant large animal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Here, we present novel evidence for dysregulated tryptophan catabolism and purine catabolism in kidney tissue and increased urinary glycolysis intermediates in animals who developed histological AKI. These pathways represent potential diagnostic and therapeutic targets for postoperative AKI in this high-risk population.Item Tissue alkaline phosphatase activity and expression in an experimental infant swine model of cardiopulmonary bypass with deep hypothermic circulatory arrest(BMC, 2020-08-12) Khailova, Ludmila; Robison, Justin; Jaggers, James; Ing, Richard; Lawson, Scott; Treece, Amy; Soranno, Danielle; Osorio Lujan, Suzanne; Davidson, Jesse A.; Pediatrics, School of MedicineBackground: Infant cardiac surgery with cardiopulmonary bypass results in decreased circulating alkaline phosphatase that is associated with poor postoperative outcomes. Bovine intestinal alkaline phosphatase infusion represents a novel therapy for post-cardiac surgery organ injury. However, the effects of cardiopulmonary bypass and bovine-intestinal alkaline phosphatase infusion on tissue-level alkaline phosphatase activity/expression are unknown. Methods: Infant pigs (n = 20) underwent cardiopulmonary bypass with deep hypothermic circulatory arrest followed by four hours of intensive care. Seven control animals underwent mechanical ventilation only. Cardiopulmonary bypass/deep hypothermic circulatory arrest animals were given escalating doses of bovine intestinal alkaline phosphatase infusion (0-25 U/kg/hr.; n = 5/dose). Kidney, liver, ileum, jejunum, colon, heart and lung were collected for measurement of tissue alkaline phosphatase activity and mRNA. Results: Tissue alkaline phosphatase activity varied significantly across organs with the highest levels found in the kidney and small intestine. Cardiopulmonary bypass with deep hypothermic circulatory arrest resulted in decreased kidney alkaline phosphatase activity and increased lung alkaline phosphatase activity, with no significant changes in the other organs. Alkaline phosphatase mRNA expression was increased in both the lung and the ileum. The highest dose of bovine intestinal alkaline phosphatase resulted in increased kidney and liver tissue alkaline phosphatase activity. Conclusions: Changes in alkaline phosphatase activity after cardiopulmonary bypass with deep hypothermic circulatory arrest and bovine intestinal alkaline phosphatase delivery are tissue specific. Kidneys, lung, and ileal alkaline phosphatase appear most affected by cardiopulmonary bypass with deep hypothermic circulatory arrest and further research is warranted to determine the mechanism and biologic importance of these changes.