- Browse by Author
Browsing by Author "Touloukian, Christopher E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item CD4+ T cell mediated tumor immunity following transplantation of TRP-1 TCR gene modified hematopoietic stem cells(2013-12-10) Ha, Sung Pil; Touloukian, Christopher E.; Broxmeyer, Hal E.; Gardner, Thomas A.; Harrington, Maureen A.; He, Johnny J.Immunotherapy for cancer has held much promise as a potent modality of cancer treatment. The ability to selectively destroy diseased cells and leave healthy cells unharmed has been the goal of cancer immunotherapy for the past thirty years. However, the full capabilities of cancer immunotherapies have been elusive. Cancer immunotherapies have been consistently hampered by limited immune reactivity, a diminishing immune response over time, and a failure to overcome self-tolerance. Many of these deficiencies have been borne-out by immunotherapies that have focused on the adoptive transfer of activated or genetically modified mature CD8+ T cells. The limitations inherent in therapies involving terminally differentiated mature lymphocytes include limited duration, lack of involvement of other components of the immune system, and limited clinical efficacy. We sought to overcome these limitations by altering and enhancing long-term host immunity by genetically modifying then transplanting HSCs. To study these questions and test the efficiency of gene transfer, we cloned a tumor reactive HLA-DR4-restricted CD4+ TCR specific for the melanocyte differentiation antigen TRP-1, then constructed both a high expression lentiviral delivery system and a TCR Tg expressing the same TCR genes. We demonstrate with both mouse and human HSCs durable, high-efficiency TCR gene transfer, following long-term transplantation. We demonstrate the induction of spontaneous autoimmune vitiligo and a TCR-specific TH1 polarized memory effector CD4+ T cell population. Most importantly, we demonstrate the destruction of subcutaneous melanoma without the aid of vaccination, immune modulation, or cytokine administration. Overall, these results demonstrate the creation of a novel translational model of durable lentiviral gene transfer, the induction of spontaneous CD4+ T cell immunity, the breaking of self-tolerance, and the induction of anti-tumor immunity.Item Chemotherapeutic agents subvert tumor immunity by generating agonists of platelet-activating factor(American Association for Cancer Research, 2014-12-01) Sahu, Ravi P.; Ocana, Jesus A.; Harrison, Kathleen A.; Ferracini, Matheus; Touloukian, Christopher E.; Al-Hassani, Mohammed; Sun, Louis; Loesch, Mathew; Murphy, Robert C.; Althouse, Sandra K.; Perkins, Susan M.; Speicher, Paul J.; Tyler, Douglas S.; Konger, Raymond L.; Travers, Jeffrey B.; Department of Dermatology, IU School of MedicineOxidative stress suppresses host immunity by generating oxidized lipid agonists of the platelet-activating factor receptor (PAF-R). Because many classical chemotherapeutic drugs induce reactive oxygen species (ROS), we investigated whether these drugs might subvert host immunity by activating PAF-R. Here, we show that PAF-R agonists are produced in melanoma cells by chemotherapy that is administered in vitro, in vivo, or in human subjects. Structural characterization of the PAF-R agonists induced revealed multiple oxidized glycerophosphocholines that are generated nonenzymatically. In a murine model of melanoma, chemotherapeutic administration could augment tumor growth by a PAF-R-dependent process that could be blocked by treatment with antioxidants or COX-2 inhibitors or by depletion of regulatory T cells. Our findings reveal how PAF-R agonists induced by chemotherapy treatment can promote treatment failure. Furthermore, they offer new insights into how to improve the efficacy of chemotherapy by blocking its heretofore unknown impact on PAF-R activation.Item Control of inflammation, helper T cell responses and regulatory T cell function by Bcl6(2014-01-13) Sawant, Deepali Vijay; Dent, Alexander L.; Kaplan, Mark H.; Blum, Janice Sherry, 1957-; Touloukian, Christopher E.Regulatory T (Treg) cells represent an important layer of immune-regulation indispensible for curtailing exuberant inflammatory responses and maintaining self-tolerance. Treg cells have translational potential for autoimmunity, inflammation, transplantation and cancer. Therefore, delineating the molecular underpinnings underlying the development, suppressor function and stability of Tregs is particularly warranted. The transcriptional repressor Bcl6 is a critical arbiter of helper T cell fate, promoting the follicular helper (Tfh) lineage while repressing Th1, Th2 and Th17 differentiation. Bcl6-deficient mice develop a spontaneous and severe Th2-type inflammatory disease including myocarditis and pulmonary vasculitis, suggesting a potential role for Bcl6 in Treg cell function. Bcl6-deficient Treg cells are competent in controlling Th1 responses, but fail to control Th2 inflammation in an airway allergen model. Importantly, mice with Bcl6 deleted specifically in the Treg lineage develop severe myocarditis, thus highlighting a critical role for Bcl6 in Treg-mediated control of Th2 inflammation. Bcl6-deficient Tregs display an intrinsic increase in Th2 genes and microRNA-21 (miR-21) expression. MiR-21 is a novel Bcl6 gene target in T cells and ectopic expression of miR-21 directs Th2 differentiation in non-polarized T cells. MiR-21 is up-regulated in mouse models of airway inflammation and also in human patients with eosinophilic esophagitis and asthma. Thus, miR-21 is a clinically relevant biomarker for Th2-type pathologies. Our results define a key function for Bcl6 in repressing Gata3 function and miR-21 expression in Tregs, and provide greater understanding of the control of Th2 inflammatory responses by Treg cells.Item Lymph node and peri-lymph node stroma : phenotype and interaction with T-cells(2014-07-11) Stoffel, Nicholas J.; Touloukian, Christopher E.; Broxmeyer, Hal E.; Srour, Edward F.; Ingram Jr., David A.The non-hematopoietic, stationary stromal cells located inside and surrounding skin-draining lymph nodes play a key role in regulating immune responses. We studied distinct populations of lymph node stromal cells from both human subjects and animal models in order to describe their phenotype and function. In the mouse model, we studied two distinct populations: an endothelial cell population expressing Ly51 and MHC-II, and an epithelial cell population expressing the epithelial adhesion molecule EpCAM. Analysis of intra-nodal and extra-nodal lymph node (CD45-) stromal cells through flow cytometry and qPCR provides a general phenotypic profile of the distinct populations. My research focused on the EpCAM+ epithelial cell population located in the fat pad surrounding the skin draining lymph nodes. The EpCAM+ population has been characterized by surface marker phenotype, anatomic location, and gene expression profile. This population demonstrates the ability to inhibit the activation and proliferation of both CD4 and CD8 T cells. This population may play a role in suppressing overactive inflammation and auto-reactive T cells that escaped thymic deletion. The other major arm of my project consisted of identifying a novel endothelial cell population in human lymph nodes. Freshly resected lymph nodes were processed into single cell suspensions and selected for non-hematopoietic CD45- stromal cells. The unique endothelial population expressing CD34 HLA-DR was then characterized and analyzed for anatomic position, surface marker expression, and gene profiles. Overall, these studies emphasize the importance of stationary lymph node stromal cells to our functioning immune systems, and may have clinical relevance to autoimmune diseases, inflammation, and bone marrow transplantation.