- Browse by Author
Browsing by Author "Tosto, Giuseppe"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A multiethnic transcriptome for Alzheimer Disease identifies cross‐ancestry and ancestry‐specific expression profiles(Wiley, 2025-01-03) Yang, Zikun; Cieza, Basilio; Reyes-Dumeyer, Dolly; Lee, Annie J.; Dugger, Brittany N.; Jin, Lee-Way; Murray, Melissa E.; Dickson, Dennis W.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Foroud, Tatiana M.; Teich, Andrew F.; Mayeux, Richard; Tosto, Giuseppe; Neurology, School of MedicineBackground: Alzheimer’s Disease (AD) presents complex molecular heterogeneity, influenced by a variety of factors including heterogeneous phenotypic, genetic, and neuropathologic presentations. Regulation of gene expression mechanisms is a primary interest of investigations aiming to uncover the underlying disease mechanisms and progression. Method: We generated bulk RNA‐sequencing in prefrontal cortex from 565 AD brain samples (non‐Hispanic Whites, n = 399; Hispanics, n = 113; African American, n = 12) across six U.S. brain banks, and conducted differential gene expression and enrichment analyses. We sought to identify cross‐ancestry and ancestry‐specific differentially expressed genes (DEG) and pathways across Braak stages, adjusting for sex, age at death, and RNA quality metrics. We validated our findings using the Religious Orders Study/Memory and Aging Project study (ROS/MAP, n = 1,095). Lastly, we validated top DEG using publically‐available human single‐nucleus RNA sequencing (snRNAseq) data. Result: AD‐known genes VGF (LFC = ‐0.661, padj = 3.78) and ADAMTS2 (padj = 1.21) were consistently differentially expressed across statistical models, ethnic groups, and replicated in ROS/MAP (Figure 1). Genes from the heat shock protein (HSP) family, e.g. HSPB7 (padj = 3.78), were the top DEG, also replicated in ROS/MAP. Ethnic‐stratified analyses prioritized TNFSF14 and SPOCD1 as top DEG in Hispanic samples. Gene set enrichment analysis highlighted several significantly pathways, including “TYROBP causal network in microglia” (WP3945; padj = 1.68) and “Alzheimer Disease” (WP5124; padj = 4.24). snRNAseq validated several DEG, including VGF downregulated in neurons (padj = 1.1). Conclusion: To our knowledge, this is the largest diverse transcriptome study for AD in post‐mortem tissue. We identified perturbated genes and pathways resulting in cross‐ethnic and ethnic‐specific findings, ultimately highlighting the importance of diversity in AD investigations.Item New insights into the genetic etiology of Alzheimer's disease and related dementias(Springer Nature, 2022) Bellenguez, Céline; Küçükali, Fahri; Jansen, Iris E.; Kleineidam, Luca; Moreno-Grau, Sonia; Amin, Najaf; Naj, Adam C.; Campos-Martin, Rafael; Grenier-Boley, Benjamin; Andrade, Victor; Holmans, Peter A.; Boland, Anne; Damotte, Vincent; van der Lee, Sven J.; Costa, Marcos R.; Kuulasmaa, Teemu; Yang, Qiong; de Rojas, Itziar; Bis, Joshua C.; Yaqub, Amber; Prokic, Ivana; Chapuis, Julien; Ahmad, Shahzad; Giedraitis, Vilmantas; Aarsland, Dag; Garcia-Gonzalez, Pablo; Abdelnour, Carla; Alarcón-Martín, Emilio; Alcolea, Daniel; Alegret, Montserrat; Alvarez, Ignacio; Álvarez, Victoria; Armstrong, Nicola J.; Tsolaki, Anthoula; Antúnez, Carmen; Appollonio, Ildebrando; Arcaro, Marina; Archetti, Silvana; Arias Pastor, Alfonso; Arosio, Beatrice; Athanasiu, Lavinia; Bailly, Henri; Banaj, Nerisa; Baquero, Miquel; Barral, Sandra; Beiser, Alexa; Belén Pastor, Ana; Below, Jennifer E.; Benchek, Penelope; Benussi, Luisa; Berr, Claudine; Besse, Céline; Bessi, Valentina; Binetti, Giuliano; Bizarro, Alessandra; Blesa, Rafael; Boada, Mercè; Boerwinkle, Eric; Borroni, Barbara; Boschi, Silvia; Bossù, Paola; Bråthen, Geir; Bressler, Jan; Bresner, Catherine; Brodaty, Henry; Brookes, Keeley J.; Brusco, Luis Ignacio; Buiza-Rueda, Dolores; Bûrger, Katharina; Burholt, Vanessa; Bush, William S.; Calero, Miguel; Cantwell, Laura B.; Chene, Geneviève; Chung, Jaeyoon; Cuccaro, Michael L.; Carracedo, Ángel; Cecchetti, Roberta; Cervera-Carles, Laura; Charbonnier, Camille; Chen, Hung-Hsin; Chillotti, Caterina; Ciccone, Simona; Claassen, Jurgen A. H. R.; Clark, Christopher; Conti, Elisa; Corma-Gómez, Anaïs; Costantini, Emanuele; Custodero, Carlo; Daian, Delphine; Dalmasso, Maria Carolina; Daniele, Antonio; Dardiotis, Efthimios; Dartigues, Jean-François; de Deyn, Peter Paul; de Paiva Lopes, Katia; de Witte, Lot D.; Debette, Stéphanie; Deckert, Jürgen; Del Ser, Teodoro; Denning, Nicola; DeStefano, Anita; Dichgans, Martin; Diehl-Schmid, Janine; Diez-Fairen, Mónica; Dionigi Rossi, Paolo; Djurovic, Srdjan; Duron, Emmanuelle; Düzel, Emrah; Dufouil, Carole; Eiriksdottir, Gudny; Engelborghs, Sebastiaan; Escott-Price, Valentina; Espinosa, Ana; Ewers, Michael; Faber, Kelley M.; Fabrizio, Tagliavini; Fallgaard Nielsen, Sune; Fardo, David W.; Farotti, Lucia; Fenoglio, Chiara; Fernández-Fuertes, Marta; Ferrari, Raffaele; Ferreira, Catarina B.; Ferri, Evelyn; Fin, Bertrand; Fischer, Peter; Fladby, Tormod; Fließbach, Klaus; Fongang, Bernard; Fornage, Myriam; Fortea, Juan; Foroud, Tatiana M.; Fostinelli, Silvia; Fox, Nick C.; Franco-Macías, Emlio; Bullido, María J.; Frank-García, Ana; Froelich, Lutz; Fulton-Howard, Brian; Galimberti, Daniela; García-Alberca, Jose Maria; García-González, Pablo; Garcia-Madrona, Sebastian; Garcia-Ribas, Guillermo; Ghidoni, Roberta; Giegling, Ina; Giorgio, Giaccone; Goate, Alison M.; Goldhardt, Oliver; Gomez-Fonseca, Duber; González-Pérez, Antonio; Graff, Caroline; Grande, Giulia; Green, Emma; Grimmer, Timo; Grünblatt, Edna; Grunin, Michelle; Gudnason, Vilmundur; Guetta-Baranes, Tamar; Haapasalo, Annakaisa; Hadjigeorgiou, Georgios; Haines, Jonathan L.; Hamilton-Nelson, Kara L.; Hampel, Harald; Hanon, Olivier; Hardy, John; Hartmann, Annette M.; Hausner, Lucrezia; Harwood, Janet; Heilmann-Heimbach, Stefanie; Helisalmi, Seppo; Heneka, Michael T.; Hernández, Isabel; Herrmann, Martin J.; Hoffmann, Per; Holmes, Clive; Holstege, Henne; Huerto Vilas, Raquel; Hulsman, Marc; Humphrey, Jack; Jan Biessels, Geert; Jian, Xueqiu; Johansson, Charlotte; Jun, Gyungah R.; Kastumata, Yuriko; Kauwe, John; Kehoe, Patrick G.; Kilander, Lena; Kinhult Ståhlbom, Anne; Kivipelto, Miia; Koivisto, Anne; Kornhuber, Johannes; Kosmidis, Mary H.; Kukull, Walter A.; Kuksa, Pavel P.; Kunkle, Brian W.; Kuzma, Amanda B.; Lage, Carmen; Laukka, Erika J.; Launer, Lenore; Lauria, Alessandra; Lee, Chien-Yueh; Lehtisalo, Jenni; Lerch, Ondrej; Lleó, Alberto; Longstreth, William, Jr.; Lopez, Oscar; Lopez de Munain, Adolfo; Love, Seth; Löwemark, Malin; Luckcuck, Lauren; Lunetta, Kathryn L.; Ma, Yiyi; Macías, Juan; MacLeod, Catherine A.; Maier, Wolfgang; Mangialasche, Francesca; Spallazzi, Marco; Marquié, Marta; Marshall, Rachel; Martin, Eden R.; Martín Montes, Angel; Martínez Rodríguez, Carmen; Masullo, Carlo; Mayeux, Richard; Mead, Simon; Mecocci, Patrizia; Medina, Miguel; Meggy, Alun; Mehrabian, Shima; Mendoza, Silvia; Menéndez-González, Manuel; Mir, Pablo; Moebus, Susanne; Mol, Merel; Molina-Porcel, Laura; Montrreal, Laura; Morelli, Laura; Moreno, Fermin; Morgan, Kevin; Mosley, Thomas; Nöthen, Markus M.; Muchnik, Carolina; Mukherjee, Shubhabrata; Nacmias, Benedetta; Ngandu, Tiia; Nicolas, Gael; Nordestgaard, Børge G.; Olaso, Robert; Orellana, Adelina; Orsini, Michela; Ortega, Gemma; Padovani, Alessandro; Paolo, Caffarra; Papenberg, Goran; Parnetti, Lucilla; Pasquier, Florence; Pastor, Pau; Peloso, Gina; Pérez-Cordón, Alba; Pérez-Tur, Jordi; Pericard, Pierre; Peters, Oliver; Pijnenburg, Yolande A. L.; Pineda, Juan A.; Piñol-Ripoll, Gerard; Pisanu, Claudia; Polak, Thomas; Popp, Julius; Posthuma, Danielle; Priller, Josef; Puerta, Raquel; Quenez, Olivier; Quintela, Inés; Qvist Thomassen, Jesper; Rábano, Alberto; Rainero, Innocenzo; Rajabli, Farid; Ramakers, Inez; Real, Luis M.; Reinders, Marcel J. T.; Reitz, Christiane; Reyes-Dumeyer, Dolly; Ridge, Perry; Riedel-Heller, Steffi; Riederer, Peter; Roberto, Natalia; Rodriguez-Rodriguez, Eloy; Rongve, Arvid; Rosas Allende, Irene; Rosende-Roca, Maitée; Royo, Jose Luis; Rubino, Elisa; Rujescu, Dan; Sáez, María Eugenia; Sakka, Paraskevi; Saltvedt, Ingvild; Sanabria, Ángela; Sánchez-Arjona, María Bernal; Sanchez-Garcia, Florentino; Sánchez Juan, Pascual; Sánchez-Valle, Raquel; Sando, Sigrid B.; Sarnowski, Chloé; Satizabal, Claudia L.; Scamosci, Michela; Scarmeas, Nikolaos; Scarpini, Elio; Scheltens, Philip; Scherbaum, Norbert; Scherer, Martin; Schmid, Matthias; Schneider, Anja; Schott, Jonathan M.; Selbæk, Geir; Seripa, Davide; Serrano, Manuel; Sha, Jin; Shadrin, Alexey A.; Skrobot, Olivia; Slifer, Susan; Snijders, Gijsje J. L.; Soininen, Hilkka; Solfrizzi, Vincenzo; Solomon, Alina; Song, Yeunjoo; Sorbi, Sandro; Sotolongo-Grau, Oscar; Spalletta, Gianfranco; Spottke, Annika; Squassina, Alessio; Stordal, Eystein; Tartan, Juan Pablo; Tárraga, Lluís; Tesí, Niccolo; Thalamuthu, Anbupalam; Thomas, Tegos; Tosto, Giuseppe; Traykov, Latchezar; Tremolizzo, Lucio; Tybjærg-Hansen, Anne; Uitterlinden, Andre; Ullgren, Abbe; Ulstein, Ingun; Valero, Sergi; Valladares, Otto; Van Broeckhoven, Christine; Vance, Jeffery; Vardarajan, Badri N.; van der Lugt, Aad; Van Dongen, Jasper; van Rooij, Jeroen; van Swieten, John; Vandenberghe, Rik; Verhey, Frans; Vidal, Jean-Sébastien; Vogelgsang, Jonathan; Vyhnalek, Martin; Wagner, Michael; Wallon, David; Wang, Li-San; Wang, Ruiqi; Weinhold, Leonie; Wiltfang, Jens; Windle, Gill; Woods, Bob; Yannakoulia, Mary; Zare, Habil; Zhao, Yi; Zhang, Xiaoling; Zhu, Congcong; Zulaica, Miren; EADB; GR@ACE; DEGESCO; EADI; GERAD; Demgene; FinnGen; ADGC; CHARGE; Farrer, Lindsay A.; Psaty, Bruce M.; Ghanbari, Mohsen; Raj, Towfique; Sachdev, Perminder; Mather, Karen; Jessen, Frank; Ikram, M. Arfan; de Mendonça, Alexandre; Hort, Jakub; Tsolaki, Magda; Pericak-Vance, Margaret A.; Amouyel, Philippe; Williams, Julie; Frikke-Schmidt, Ruth; Clarimon, Jordi; Deleuze, Jean-François; Rossi, Giacomina; Seshadri, Sudha; Andreassen, Ole A.; Ingelsson, Martin; Hiltunen, Mikko; Sleegers, Kristel; Schellenberg, Gerard D.; van Duijn, Cornelia M.; Sims, Rebecca; van der Flier, Wiesje M.; Ruiz, Agustín; Ramirez, Alfredo; Lambert, Jean-Charles; Medical and Molecular Genetics, School of MedicineCharacterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.Item Polygenic risk score penetrance & recurrence risk in familial Alzheimer disease(Wiley, 2023) Qiao, Min; Lee, Annie J.; Reyes-Dumeyer, Dolly; Tosto, Giuseppe; Faber, Kelley; Goate, Alison; Renton, Alan; Chao, Michael; Boeve, Brad; Cruchaga, Carlos; Pericak-Vance, Margaret; Haines, Jonathan L.; Rosenberg, Roger; Tsuang, Debby; Sweet, Robert A.; Bennett, David A.; Wilson, Robert S.; Foroud, Tatiana; Mayeux, Richard; Vardarajan, Badri N.; Medical and Molecular Genetics, School of MedicineObjective: To compute penetrance and recurrence risk using a genome-wide PRS (including and excluding the APOE region) in families with Alzheimer's disease. Methods: Genotypes from the National Institute on Aging Late-Onset Alzheimer's Disease Family-Based Study and a study of familial Alzheimer's disease in Caribbean Hispanics were used to compute PRS with and without variants in the 2 MB region flanking APOE. PRS was calculated in using clumping/thresholding and Bayesian methods and was assessed for association with Alzheimer's disease and age at onset. Penetrance and recurrence risk for carriers in highest and lowest PRS quintiles were compared separately within APOE-ε4 carriers and non-carriers. Results: PRS excluding the APOE region was strongly associated with clinical and neuropathological diagnosis of AD. PRS association with AD was similar in participants who did not carry an APOE-ε4 allele (OR = 1.74 [1.53-1.91]) compared with APOE-ε4 carriers (1.53 [1.4-1.68]). Compared to the lowest quintile, the highest PRS quintile had a 10% higher penetrance at age 70 (p = 0.0006) and a 20% higher penetrance at age 80 (p < 10e-05). Stratifying by APOE-ε4 allele, PRS in the highest quintile was significantly more penetrant than the lowest quintile, both, within APOE-ε4 carriers (14.5% higher at age 80, p = 0.002) and non-carriers (26% higher at 80, p < 10e-05). Recurrence risk for siblings conferred by a co-sibling in the highest PRS quintile increased from 4% between the ages of 65-74 years to 39% at age 85 and older. Interpretation: PRS can be used to estimate penetrance and recurrence risk in familial Alzheimer's disease among carriers and non-carries of APOE-ε4.Item Polytranscriptomic risk score for Alzheimer Disease in a large diverse multi‐center brain bank study(Wiley, 2025-01-03) Cieza, Basilio; Yang, Zikun; Reyes-Dumeyer, Dolly; Lee, Annie J.; Dugger, Brittany N.; Jin, Lee-Way; Murray, Melissa E.; Dickson, Dennis W.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Foroud, Tatiana M.; Mayeux, Richard; Tosto, Giuseppe; Neurology, School of MedicineBackground: Alzheimer’s disease (AD) missing heritability remains extensive despite numerous genetic risk loci identified by genome‐wide association or sequencing studies. This has been attributed, at least partially, to mechanisms not currently investigated by traditional single‐marker/gene approaches. Polygenic Risk Scores (PRS) aggregate sparse genetic information across the genome to identify individual genetic risk profiles for disease prediction and patient risk stratification. Recent advancements have pivoted on innovative approaches utilizing OMICS data to construct such risk scores. Method: We employed a random forest algorithm to identify a list of gene candidates from bulk RNA sequencing data in prefrontal cortex from 565 AD brain samples (non‐Hispanic Whites, n = 399; Hispanics, n = 113; African American, n = 12) across six U.S. brain banks. Subsequently, we calculated their effect size on Braak staging using regression models to construct a polytranscriptomic risk score (PTRS). We employed two distinct models: “Ethnicity‐Agnostic” Model (randomly assigning samples to training and testing samples) and “Ethnicity‐Aware” Model (assigning NHW samples to training and Hispanics to testing sample). Analysis of variance and the receiver operating characteristics area under the curve (ROC AUC) was used to evaluate PTRS’s classification performances. We validated findings using the Religious Orders Study/Memory and Aging Project study (ROS/MAP, n = 1,095). Result: We found a significant difference in PTRS between samples with low vs. high Braak stages (≤4 vs. ≥5, p = 1*E‐04; Figure 1 upper panel). AUC was found to be 79‐81%, consistently in both Ethnicity‐Agnostic and Ethnicity‐Aware models (Figure 1 lower panel). Finally, the PTRS in ROS/MAP yielded a similar classification performance (p = 2*E‐04, AUC = 77%). Conclusion: Contrary to prior studies, we developed a PTRS with optimal transferability across ethnicities. This underscores the importance of developing novel tools to stratify and harmonize large brain repositories for AD.Item White matter hyperintensities and the mediating role of cerebral amyloid angiopathy in dominantly-inherited Alzheimer's disease(Public Library of Science, 2018-05-09) Lee, Seonjoo; Zimmerman, Molly E.; Narkhede, Atul; Nasrabady, Sara E.; Tosto, Giuseppe; Meier, Irene B.; Benzinger, Tammie L. S.; Marcus, Daniel S.; Fagan, Anne M.; Fox, Nick C.; Cairns, Nigel J.; Holtzman, David M.; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N.; Saykin, Andrew J.; Masters, Colin L.; Ringman, John M.; Fӧrster, Stefan; Schofield, Peter R.; Sperling, Reisa A. n; Johnson, Keith A. n; Chhatwal, Jasmeer P.; Salloway, Stephen; Correia, Stephen; Jack, Clifford R., Jr.; Weiner, Michael; Bateman, Randall J.; Morris, John C.; Mayeux, Richard; Brickman, Adam M.; Dominantly Inherited Alzheimer Network; Pathology and Laboratory Medicine, School of MedicineINTRODUCTION: White matter hyperintensity (WMH) volume on MRI is increased among presymptomatic individuals with autosomal dominant mutations for Alzheimer's disease (AD). One potential explanation is that WMH, conventionally considered a marker of cerebrovascular disease, are a reflection of cerebral amyloid angiopathy (CAA) and that increased WMH in this population is a manifestation of this vascular form of primary AD pathology. We examined whether the presence of cerebral microbleeds, a marker of CAA, mediates the relationship between WMH and estimated symptom onset in individuals with and without autosomal dominant mutations for AD. PARTICIPANTS AND METHODS: Participants (n = 175, mean age = 41.1 years) included 112 with an AD mutation and 63 first-degree non-carrier controls. We calculated the estimated years from expected symptom onset (EYO) and analyzed baseline MRI data for WMH volume and presence of cerebral microbleeds. Mixed effects regression and tests of mediation were used to examine microbleed and WMH differences between carriers and non-carriers and to test the whether the association between WMH and mutation status is dependent on the presence of microbleeds. RESULTS: Mutation carriers were more likely to have microbleeds than non-carriers (p<0.05) and individuals with microbleeds had higher WMH volume than those without (p<0.05). Total WMH volume was increased in mutation carriers compared with non-carriers, up to 20 years prior to EYO, after controlling for microbleed status, as we demonstrated previously. Formal testing of mediation demonstrated that 21% of the association between mutation status and WMH was mediated by presence of microbleeds (p = 0.03) but a significant direct effect of WMH remained (p = 0.02) after controlling for presence of microbleeds. DISCUSSION: Although there is some co-dependency between WMH and microbleeds, the observed increases in WMH among mutation carriers does not appear to be fully mediated by this marker of CAA. The findings highlight the possibility that WMH represent a core feature of AD independent of vascular forms of beta amyloid.Item White matter hyperintensities are a core feature of Alzheimer's disease: Evidence from the dominantly inherited Alzheimer network(Wiley, 2016-06) Lee, Seonjoo; Viqar, Fawad; Zimmerman, Molly E.; Narkhede, Atul; Tosto, Giuseppe; Benzinger, Tammie L.S.; Marcus, Daniel S.; Fagan, Anne M.; Goate, Alison; Fox, Nick C.; Cairns, Nigel J.; Holtzman, David M.; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N.; Saykin, Andrew J.; Masters, Colin L.; Ringman, John M.; Ryan, Natalie S.; Förster, Stefan; Laske, Christoph; Schofield, Peter R.; Sperling, Reisa A.; Salloway, Stephen; Correia, Stephen; Jack, Clifford; Weiner, Michael; Bateman, Randall J.; Morris, John C.; Mayeux, Richard; Brickman, Adam M.; Dominantly Inherited Alzheimer Network; Department of Pathology and Laboratory Medicine, School of MedicineWhite matter hyperintensities (WMHs) are areas of increased signal on T2-weighted magnetic resonance imaging (MRI) scans that most commonly reflect small vessel cerebrovascular disease. Increased WMH volume is associated with risk and progression of Alzheimer's disease (AD). These observations are typically interpreted as evidence that vascular abnormalities play an additive, independent role contributing to symptom presentation, but not core features of AD. We examined the severity and distribution of WMH in presymptomatic PSEN1, PSEN2, and APP mutation carriers to determine the extent to which WMH manifest in individuals genetically determined to develop AD.