- Browse by Author
Browsing by Author "Tosteson, Tor D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes(American Academy of Neurology, 2014-01-07) McAllister, Thomas W.; Ford, James C.; Flashman, Laura A.; Maerlender, Arthur; Greenwald, Richard M.; Beckwith, Jonathan G.; Bolander, Richard P.; Tosteson, Tor D.; Turco, John H.; Raman, Rema; Jain, Sonia; Department of Psychiatry, IU School of MedicineOBJECTIVE: To determine whether exposure to repetitive head impacts over a single season affects white matter diffusion measures in collegiate contact sport athletes. METHODS: A prospective cohort study at a Division I NCAA athletic program of 80 nonconcussed varsity football and ice hockey players who wore instrumented helmets that recorded the acceleration-time history of the head following impact, and 79 non-contact sport athletes. Assessment occurred preseason and shortly after the season with diffusion tensor imaging and neurocognitive measures. RESULTS: There was a significant (p = 0.011) athlete-group difference for mean diffusivity (MD) in the corpus callosum. Postseason fractional anisotropy (FA) differed (p = 0.001) in the amygdala (0.238 vs 0.233). Measures of head impact exposure correlated with white matter diffusivity measures in several brain regions, including the corpus callosum, amygdala, cerebellar white matter, hippocampus, and thalamus. The magnitude of change in corpus callosum MD postseason was associated with poorer performance on a measure of verbal learning and memory. CONCLUSION: This study suggests a relationship between head impact exposure, white matter diffusion measures, and cognition over the course of a single season, even in the absence of diagnosed concussion, in a cohort of college athletes. Further work is needed to assess whether such effects are short term or persistent.Item Guidance for biostatisticians on their essential contributions to clinical and translational research protocol review(Cambridge University Press, 2021-07-12) Ciolino, Jody D.; Spino, Cathie; Ambrosius, Walter T.; Khalatbari, Shokoufeh; Messinger Cayetano, Shari; Lapidus, Jodi A.; Nietert, Paul J.; Oster, Robert A.; Perkins, Susan M.; Pollock, Brad H.; Pomann, Gina-Maria; Price, Lori Lyn; Rice, Todd W.; Tosteson, Tor D.; Lindsell, Christopher J.; Spratt, Heidi; Biostatistics and Health Data Science, School of MedicineRigorous scientific review of research protocols is critical to making funding decisions, and to the protection of both human and non-human research participants. Given the increasing complexity of research designs and data analysis methods, quantitative experts, such as biostatisticians, play an essential role in evaluating the rigor and reproducibility of proposed methods. However, there is a common misconception that a statistician’s input is relevant only to sample size/power and statistical analysis sections of a protocol. The comprehensive nature of a biostatistical review coupled with limited guidance on key components of protocol review motived this work. Members of the Biostatistics, Epidemiology, and Research Design Special Interest Group of the Association for Clinical and Translational Science used a consensus approach to identify the elements of research protocols that a biostatistician should consider in a review, and provide specific guidance on how each element should be reviewed. We present the resulting review framework as an educational tool and guideline for biostatisticians navigating review boards and panels. We briefly describe the approach to developing the framework, and we provide a comprehensive checklist and guidance on review of each protocol element. We posit that the biostatistical reviewer, through their breadth of engagement across multiple disciplines and experience with a range of research designs, can and should contribute significantly beyond review of the statistical analysis plan and sample size justification. Through careful scientific review, we hope to prevent excess resource expenditure and risk to humans and animals on poorly planned studies.