- Browse by Author
Browsing by Author "Torres, Vicente E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Pioglitazone Attenuates Cystic Burden in the PCK Rodent Model of Polycystic Kidney Disease(2010) Blazer-Yost, Bonnie; Haydon, Julie; Eggleston-Gulyas, Tracy; Chen, Jey-Hsin; Wang, Xiaofang; Gattone, Vincent; Torres, Vicente E.Polycystic kidney disease (PKD) is a genetic disorder characterized by growth of fluid-filled cysts predominately in kidney tubules and liver bile ducts. Currently, the clinical management of PKD is limited to cyst aspiration, surgical resection or organ transplantation. Based on an observation that PPARγ agonists such as pioglitazone and rosiglitazone decrease mRNA levels of a Cl(-) transport protein, CFTR (cystic fibrosis transmembrane conductance regulator), and the Cl(-) secretory response to vasopressin in cultured renal cells, it is hypothesized that PPARγ agonists will inhibit cyst growth. The current studies show that a 7- or 14-week pioglitazone feeding regimen inhibits renal and hepatic bile duct cyst growth in the PCK rat, a rodent model orthologous to human PKD. These studies provide proof of concept for the mechanism of action of the PPARγ agonists and suggest that this class of drugs may be effective in controlling both renal and hepatic cyst growth and fibrosis in PKD.Item Pioglitazone, an Insulin Sensitizing Drug, Attenuates the Development of Kidney and Liver Disease in the PCK Rodent Model of Polycystic Kidney Disease(Office of the Vice Chancellor for Research, 2010-04-09) Blazer-Yost, Bonnie L.; Haydon, Julie; Eggelston, Tracy; Chen, Jey-Hsin; Torres, Vicente E.; Gattone, VincentPolycystic kidney disease is a genetic disorder characterized by growth of fluid-filled cysts predominately in kidney and liver. The only treatment currently available is the removal/aspiration of the largest cysts or organ transplantation. Promising pharmaceutical agents in clinical trials interfere with the action of hormones that increase cAMP thereby inhibiting secretion of Cl-, and compensatory fluid flux, into the cysts. Other treatments proposed include chemotherapeutic and immunosuppressive drugs that interfere with cellular proliferation as well as with signaling pathways for Cl- secretion. Long-term use of these agents will have multiple side effects. Based on a recent observation that peroxisome proliferator activated receptor γ agonists such as Actos (pioglitazone) and Avandia (rosiglitazone) decrease mRNA levels of a Cl- transport protein and the Cl- secretory response to vasopressin stimulation in cultured renal cells, it is hypothesized that PPARγ agonists will inhibit cyst growth. The current studies show that a 7 or 14 week feeding regimen of 20 mg/Kg BW pioglitazone inhibits renal and hepatic bile duct cyst growth in a rodent model orthologous to human PKD. In addition, the degree of renal cortical fibrosis was diminished in the pioglitazone-treated animals after 14 weeks. These results suggest that PPARγ agonists may be effective in controlling both renal and hepatic cyst growth and renal fibrotic development in polycystic kidney disease.Item Prospects for mTOR Inhibitor Use in Patients with Polycystic Kidney Disease and Hamartomatous Diseases(American Society of Nephrology, 2010-07) Torres, Vicente E.; Boletta, Alessandra; Chapman, Arlene; Gattone, Vincent; Pei, York; Qian, Qi; Wallace, Darren P.; Weimbs, Thomas; Wüthrich, Rudolf P.; Anatomy and Cell Biology, School of MedicineMammalian target of rapamycin (mTOR) is the core component of two complexes, mTORC1 and mTORC2. mTORC1 is inhibited by rapamycin and analogues. mTORC2 is impeded only in some cell types by prolonged exposure to these compounds. mTOR activation is linked to tubular cell proliferation in animal models and human autosomal dominant polycystic kidney disease (ADPKD). mTOR inhibitors impede cell proliferation and cyst growth in polycystic kidney disease (PKD) models. After renal transplantation, two small retrospective studies suggested that mTOR was more effective than calcineurin inhibitor-based immunosuppression in limiting kidney and/or liver enlargement. By inhibiting vascular remodeling, angiogenesis, and fibrogenesis, mTOR inhibitors may attenuate nephroangiosclerosis, cyst growth, and interstitial fibrosis. Thus, they may benefit ADPKD at multiple levels. However, mTOR inhibition is not without risks and side effects, mostly dose-dependent. Under certain conditions, mTOR inhibition interferes with adaptive increases in renal proliferation necessary for recovery from injury. They restrict Akt activation, nitric oxide synthesis, and endothelial cell survival (downstream from mTORC2) and potentially increase the risk for glomerular and peritubular capillary loss, vasospasm, and hypertension. They impair podocyte integrity pathways and may predispose to glomerular injury. Administration of mTOR inhibitors is discontinued because of side effects in up to 40% of transplant recipients. Currently, treatment with mTOR inhibitors should not be recommended to treat ADPKD. Results of ongoing studies must be awaited and patients informed accordingly. If effective, lower dosages than those used to prevent rejection would minimize side effects. Combination therapy with other effective drugs could improve tolerability and results.Item A randomized phase 1b cross-over study of the safety of low-dose pioglitazone for treatment of autosomal dominant polycystic kidney disease(Oxford University Press, 2021-07) Blazer-Yost, Bonnie L.; Bacallao, Robert L.; Erickson, Bradley J.; LaPradd, Michelle L.; Edwards, Marie E.; Sheth, Nehal; Swinney, Kim; Ponsler-Sipes, Kristen M.; Moorthi, Ranjani N.; Perkins, Susan M.; Torres, Vicente E.; Moe, Sharon M.; Biology, School of ScienceBackground: Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenetic disorders in humans and is characterized by numerous fluid-filled cysts that grow slowly, resulting in end-stage renal disease in the majority of patients. Preclinical studies have indicated that treatment with low-dose thiazolidinediones, such as pioglitazone, decrease cyst growth in rodent models of PKD. Methods: This Phase 1b cross-over study compared the safety of treatment with a low dose (15 mg) of the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist pioglitazone or placebo in PKD patients, with each treatment given for 1 year. The study monitored known side effects of PPAR-γ agonist treatment, including fluid retention and edema. Liver enzymes and risk of hypoglycemia were assessed throughout the study. As a secondary objective, the efficacy of low-dose pioglitazone was followed using a primary assessment of total kidney volume (TKV), blood pressure (BP) and kidney function. Results: Eighteen patients were randomized and 15 completed both arms. Compared with placebo, allocation to pioglitazone resulted in a significant decrease in total body water as assessed by bioimpedance analysis {mean difference 0.16 Ω [95% confidence interval (CI) 0.24-2.96], P = 0.024} and no differences in episodes of heart failure, clinical edema or change in echocardiography. Allocation to pioglitazone led to no difference in the percent change in TKV of -3.5% (95% CI -8.4-1.4, P = 0.14), diastolic BP and microalbumin:creatinine ratio. Conclusions: In this small pilot trial in people with ADPKD but without diabetes, pioglitazone 15 mg was found to be as safe as placebo. Larger and longer-term randomized trials powered to assess effects on TKV are needed.