- Browse by Author
Browsing by Author "Thornton, Timothy A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program(Springer Nature, 2021) Taliun, Daniel; Harris, Daniel N.; Kessler, Michael D.; Carlson, Jedidiah; Szpiech, Zachary A.; Torres, Raul; Gagliano Taliun, Sarah A.; Corvelo, André; Gogarten, Stephanie M.; Kang, Hyun Min; Pitsillides, Achilleas N.; LeFaive, Jonathon; Lee, Seung-Been; Tian, Xiaowen; Browning, Brian L.; Das, Sayantan; Emde, Anne-Katrin; Clarke, Wayne E.; Loesch, Douglas P.; Shetty, Amol C.; Blackwell, Thomas W.; Smith, Albert V.; Wong, Quenna; Liu, Xiaoming; Conomos, Matthew P.; Bobo, Dean M.; Aguet, François; Albert, Christine; Alonso, Alvaro; Ardlie, Kristin G.; Arking, Dan E.; Aslibekyan, Stella; Auer, Paul L.; Barnard, John; Barr, R. Graham; Barwick, Lucas; Becker, Lewis C.; Beer, Rebecca L.; Benjamin, Emelia J.; Bielak, Lawrence F.; Blangero, John; Boehnke, Michael; Bowden, Donald W.; Brody, Jennifer A.; Burchard, Esteban G.; Cade, Brian E.; Casella, James F.; Chalazan, Brandon; Chasman, Daniel I.; Chen, Yii-Der Ida; Cho, Michael H.; Choi, Seung Hoan; Chung, Mina K.; Clish, Clary B.; Correa, Adolfo; Curran, Joanne E.; Custer, Brian; Darbar, Dawood; Daya, Michelle; de Andrade, Mariza; DeMeo, Dawn L.; Dutcher, Susan K.; Ellinor, Patrick T.; Emery, Leslie S.; Eng, Celeste; Fatkin, Diane; Fingerlin, Tasha; Forer, Lukas; Fornage, Myriam; Franceschini, Nora; Fuchsberger, Christian; Fullerton, Stephanie M.; Germer, Soren; Gladwin, Mark T.; Gottlieb, Daniel J.; Guo, Xiuqing; Hall, Michael E.; He, Jiang; Heard-Costa, Nancy L.; Heckbert, Susan R.; Irvin, Marguerite R.; Johnsen, Jill M.; Johnson, Andrew D.; Kaplan, Robert; Kardia, Sharon L. R.; Kelly, Tanika; Kelly, Shannon; Kenny, Eimear E.; Kiel, Douglas P.; Klemmer, Robert; Konkle, Barbara A.; Kooperberg, Charles; Köttgen, Anna; Lange, Leslie A.; Lasky-Su, Jessica; Levy, Daniel; Lin, Xihong; Lin, Keng-Han; Liu, Chunyu; Loos, Ruth J. F.; Garman, Lori; Gerszten, Robert; Lubitz, Steven A.; Lunetta, Kathryn L.; Mak, Angel C. Y.; Manichaikul, Ani; Manning, Alisa K.; Mathias, Rasika A.; McManus, David D.; McGarvey, Stephen T.; Meigs, James B.; Meyers, Deborah A.; Mikulla, Julie L.; Minear, Mollie A.; Mitchell, Braxton D.; Mohanty, Sanghamitra; Montasser, May E.; Montgomery, Courtney; Morrison, Alanna C.; Murabito, Joanne M.; Natale, Andrea; Natarajan, Pradeep; Nelson, Sarah C.; North, Kari E.; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Pankratz, Nathan; Peloso, Gina M.; Peyser, Patricia A.; Pleiness, Jacob; Post, Wendy S.; Psaty, Bruce M.; Rao, D. C.; Redline, Susan; Reiner, Alexander P.; Roden, Dan; Rotter, Jerome I.; Ruczinski, Ingo; Sarnowski, Chloé; Schoenherr, Sebastian; Schwartz, David A.; Seo, Jeong-Sun; Seshadri, Sudha; Sheehan, Vivien A.; Sheu, Wayne H.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Smith, Jennifer A.; Sotoodehnia, Nona; Stilp, Adrienne M.; Tang, Weihong; Taylor, Kent D.; Telen, Marilyn; Thornton, Timothy A.; Tracy, Russell P.; Van Den Berg, David J.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Vrieze, Scott; Weeks, Daniel E.; Weir, Bruce S.; Weiss, Scott T.; Weng, Lu-Chen; Willer, Cristen J.; Zhang, Yingze; Zhao, Xutong; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Boerwinkle, Eric; Gabriel, Stacey; Gibbs, Richard; Rice, Kenneth M.; Rich, Stephen S.; Silverman, Edwin K.; Qasba, Pankaj; Gan, Weiniu; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Papanicolaou, George J.; Nickerson, Deborah A.; Browning, Sharon R.; Zody, Michael C.; Zöllner, Sebastian; Wilson, James G.; Cupples, L. Adrienne; Laurie, Cathy C.; Jaquish, Cashell E.; Hernandez, Ryan D.; O'Connor, Timothy D.; Abecasis, Gonçalo R.; Epidemiology, Richard M. Fairbanks School of Public HealthThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.Item Variant-specific inflation factors for assessing population stratification at the phenotypic variance level(Springer Nature, 2021-06-09) Sofer, Tamar; Zheng, Xiuwen; Laurie, Cecelia A.; Gogarten, Stephanie M.; Brody, Jennifer A.; Conomos, Matthew P.; Bis, Joshua C.; Thornton, Timothy A.; Szpiro, Adam; O’Connell, Jeffrey R.; Lange, Ethan M.; Gao, Yan; Cupples, L. Adrienne; Psaty, Bruce M.; NHLBI Trans- Omics for Precision Medicine (TOPMed) Consortium; Rice, Kenneth M.; Medicine, School of MedicineIn modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term ‘variance stratification’. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI.