- Browse by Author
Browsing by Author "Thorat, Mangesh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item ITF2 is a target of CXCR4 in MDA-MB-231 breast cancer cells and is associated with reduced survival in estrogen receptor-negative breast cancer(Taylor & Francis, 2010-08-15) Appaiah, Hitesh; Bhat-Nakshatri, Poornima; Mehta, Rutika; Thorat, Mangesh; Badve, Sunil; Nakshatri, HarikrishnaCXCR4, a chemokine receptor, plays an important role in breast cancer growth, invasion, and metastasis. The transcriptional targets of CXCR4 signaling are not known. Microarray analysis of CXCR4-enriched and CXCR4-low subpopulations of the MDA-MB-231 breast cancer cell line, which has a constitutively active CXCR4 signaling network, revealed differential expression of ∼ 200 genes in the CXCR4-enriched subpopulation. ITF2, upregulated in CXCR4-enriched cells, was investigated further. Expression array datasets of primary breast tumors revealed higher ITF2 expression in estrogen receptor negative tumors, which correlated with reduced progression free and overall survival and suggested its relevance in breast cancer progression. CXCL12, a CXCR4 ligand, increased ITF2 expression in MDA-MB-231 cells. ITF2 is a basic helixloop-helix transcription factor that controls the epithelial-to-mesenchymal transition and the function of the ID family (inhibitor-of-differentiation) of transcription factors, such as ID2. ID2 promotes differentiation of breast epithelial cells and its reduced expression in breast cancer is associated with an unfavorable prognosis. Both CXCR4 and ITF2 repressed ID2 expression. In xenograft studies, CXCR4-enriched cells formed large tumors and exhibited significantly elevated lung metastasis. Short interfering RNA against ITF2 reduced invasion of the CXCR4-enriched MDA-MB-231 subpopulation, whereas ITF2 overexpression restored the invasive capacity of MDA-MB-231 cells expressing CXCR4shRNA. Furthermore, overexpression of ITF2 in these cells enhanced tumor growth. We propose that ITF2 is one of the CXCR4 targets, which is involved in CXCR4-dependent tumor growth and invasion of breast cancer cells.Item Subcellular Localization of Activated AKT in Estrogen Receptor- and Progesterone Receptor-Expressing Breast Cancers(Elsevier, 2010-05) Badve, Sunil; Collins, Nikail R.; Bhat-Nakshatri, Poornima; Turbin, Dmitry; Leung, Samuel; Thorat, Mangesh; Dunn, Sandra E.; Geistlinger, Tim R.; Carroll, Jason S.; Brown, Myles; Bose, Shikha; Teitell, Michael A.; Nakshatri, HarikrishnaActivated v-AKT murine thymoma viral oncogene homolog 1 (AKT)/protein kinase B (PKB) kinase (pAKT) is localized to the plasma membrane, cytoplasm, and/or nucleus in 50% of cancers. The clinical importance of pAKT localization and the mechanism(s) controlling this compartmentalization are unknown. In this study, we examined nuclear and cytoplasmic phospho-AKT (pAKT) expression by immunohistochemistry in a breast cancer tissue microarray (n = 377) with ≈15 years follow-up and integrated these data with the expression of estrogen receptor (ER)α, progesterone receptor (PR), and FOXA1. Nuclear localization of pAKT (nuclear-pAKT) was associated with long-term survival (P = 0.004). Within the ERα+/PR+ subgroup, patients with nuclear-pAKT positivity had better survival than nuclear-pAKT–negative patients (P ≤ 0.05). The association of nuclear-pAKT with the ERα+/PR+ subgroup was validated in an independent cohort (n = 145). TCL1 family proteins regulate nuclear transport and/or activation of AKT. TCL1B is overexpressed in ERα-positive compared with ERα-negative breast cancers and in lung metastasis–free breast cancers. Therefore, we examined the possible control of TCL1 family member(s) expression by the estrogen:ERα pathway. Estradiol increased TCL1B expression and increased nuclear-pAKT levels in breast cancer cells; short- interfering RNA against TCL1B reduced nuclear-pAKT. Overexpression of nuclear-targeted AKT1 in MCF-7 cells increased cell proliferation without compromising sensitivity to the anti-estrogen, tamoxifen. These results suggest that subcellular localization of activated AKT plays a significant role in determining its function in breast cancer, which in part is dependent on TCL1B expression.