- Browse by Author
Browsing by Author "Thomson, Louise E. J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Diastolic dysfunction in women with ischemia and no obstructive coronary artery disease: Mechanistic insight from magnetic resonance imaging(Elsevier, 2021) Samuel, T. Jake; Wei, Janet; Sharif, Behzad; Tamarappoo, Balaji K.; Pattisapu, Varun; Maughan, Jenna; Cipher, Daisha J.; Suppogu, Nissi; Aldiwani, Haider; Thomson, Louise E. J.; Shufelt, Chrisandra; Berman, Daniel S.; Li, Debiao; Bairey Merz, C. Noel; Nelson, Michael D.; Medicine, School of MedicineBackground: Ischemia with no obstructive coronary artery disease (INOCA) is prevalent in women and is associated with increased risk of developing heart failure with preserved ejection fraction (HFpEF); however, the mechanism(s) contributing to this progression remains unclear. Given that diastolic dysfunction is common in women with INOCA, defining mechanisms related to diastolic dysfunction in INOCA could identify therapeutic targets to prevent HFpEF. Methods: Cardiac MRI was performed in 65 women with INOCA and 12 reference controls. Diastolic function was defined by left ventricular early diastolic circumferential strain rate (eCSRd). Contributors to diastolic dysfunction were chosen a priori as coronary vascular dysfunction (myocardial perfusion reserve index [MPRI]), diffuse myocardial fibrosis (extracellular volume [ECV]), and aortic stiffness (aortic pulse wave velocity [aPWV]). Results: Compared to controls, eCSRd was lower in INOCA (1.61 ± 0.33/s vs. 1.36 ± 0.31/s, P = 0.016); however, this difference was not exaggerated when the INOCA group was sub-divided by low and high MPRI (P > 0.05) nor was ECV elevated in INOCA (29.0 ± 1.9% vs. 28.0 ± 3.2%, control vs. INOCA; P = 0.38). However, aPWV was higher in INOCA vs. controls (8.1 ± 3.2 m/s vs. 6.1 ± 1.5 m/s; P = 0.045), and was associated with eCSRd (r = -0.50, P < 0.001). By multivariable linear regression analysis, aPWV was an independent predictor of decreased eCSRd (standardized β = -0.39, P = 0.003), as was having an elevated left ventricular mass index (standardized β = -0.25, P = 0.024) and lower ECV (standardized β = 0.30, P = 0.003). Conclusions: These data provide mechanistic insight into diastolic dysfunction in women with INOCA, identifying aortic stiffness and ventricular remodeling as putative therapeutic targets.Item Left ventricular circumferential strain and coronary microvascular dysfunction: A report from the Women’s Ischemia Syndrome Evaluation Coronary Vascular Dysfunction (WISE-CVD) Project(Elsevier, 2021) Tamarappoo, Balaji; Samuel, T. Jake; Elboudwarej, Omeed; Thomson, Louise E. J.; Aldiwani, Haider; Wei, Janet; Mehta, Puja; Cheng, Susan; Sharif, Behzad; AlBadri, Ahmed; Handberg, Eileen M.; Petersen, John; Pepine, Carl J.; Nelson, Michael D.; Bairey Merz, C. Noel; Graduate Medical Education, School of MedicineAims: Women with ischemia but no obstructive coronary artery disease (INOCA) often have coronary microvascular dysfunction (CMD). Left ventricular (LV) circumferential strain (CS) is often lower in INOCA compared to healthy controls; however, it remains unclear whether CS differs between INOCA women with and without CMD. We hypothesized that CS would be lower in women with CMD, consistent with CMD-induced LV mechanical dysfunction. Methods and results: Cardiac magnetic resonance (cMR) images were examined from women enrolled in the Women's Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction Project. CS by feature tracking in INOCA women with CMD, defined as myocardial perfusion reserve index (MPRI) <1.84 during adenosine-stress perfusion cMR, was compared with CS in women without CMD. In a subset who had invasive coronary function testing (CFT), the relationship between CS and CFT metrics, LV ejection fraction (LVEF) and cardiovascular risk factors was investigated. Among 317 women with INOCA, 174 (55%) had CMD measured by MPRI. CS was greater in women with CMD compared to those without CMD (23.2 ± 2.5% vs. 22.1 ± 3.0%, respectively, P = 0.001). In the subset with CFT (n = 153), greater CS was associated with increased likelihood of reduced vasodilator capacity (OR = 1.33, 95%CI = 1.02-1.72, p = 0.03) and discriminated abnormal vs. normal coronary vascular function compared to CAD risk factors, LVEF and LV concentricity (AUC: 0.82 [0.73-0.96 95%CI] vs. 0.65 [0.60-0.71 95%CI], respectively, P = 0.007). Conclusion: The data indicate that LV circumferential strain is related to and predicts CMD, although in a direction contrary with our hypothesis, which may represent an early sign of LV mechanical dysfunction in CMD.Item Reduced myocardial perfusion is common among subjects with ischemia and no obstructive coronary artery disease and heart failure with preserved ejection fraction: a report from the WISE-CVD continuation study(OAE, 2022) Aldiwani, Haider; Nelson, Michael D.; Sharif, Behzad; Wei, Janet; Samuel, T. Jake; Suppogu, Nissi; Quesada, Odayme; Cook-Wiens, Galen; Gill, Edward; Szczepaniak, Lidia S.; Thomson, Louise E. J.; Tamarappoo, Balaji; Asif, Anum; Shufelt, Chrisandra; Berman, Daniel; Merz, C. Noel Bairey; Medicine, School of MedicineAim: Women with evidence of ischemia and no obstructive coronary artery disease (INOCA) have an increased risk of major adverse cardiac events, including heart failure with preserved ejection fraction (HFpEF). To investigate potential links between INOCA and HFpEF, we examined pathophysiological findings present in both INOCA and HFpEF. Methods: We performed adenosine stress cardiac magnetic resonance imaging (CMRI) in 56 participants, including 35 women with suspected INOCA, 13 women with HFpEF, and 8 reference control women. Myocardial perfusion imaging was performed at rest and with vasodilator stress with intravenous adenosine. Myocardial perfusion reserve index was quantified as the ratio of the upslope of increase in myocardial contrast at stress vs. rest. All CMRI measures were quantified using CVI42 software (Circle Cardiovascular Imaging Inc). Statistical analysis was performed using linear regression models, Fisher's exact tests, ANOVA, or Kruskal-Wallis tests. Results: Age (P = 0.007), Body surface area (0.05) were higher in the HFpEF group. Left ventricular ejection fraction (P = 0.02) was lower among the INOCA and HFpEF groups than reference controls after age adjustment. In addition, there was a graded reduction in myocardial perfusion reserve index in HFpEF vs. INOCA vs. reference controls (1.5 ± 0.3, 1.8 ± 0.3, 1.9 ± 0.3, P = 0.02), which was attenuated with age-adjustment. Conclusion: Reduced myocardial perfusion reserve appears to be a common pathophysiologic feature in INOCA and HFpEF patients.