- Browse by Author
Browsing by Author "Thompson, Alastair M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item FOXA1 and adaptive response determinants to HER2 targeted therapy in TBCRC 036(Springer Nature, 2021-05-12) Angus, Steven P.; Stuhlmiller, Timothy J.; Mehta, Gaurav; Bevill, Samantha M.; Goulet, Daniel R.; Olivares-Quintero, J. Felix; East, Michael P.; Tanioka, Maki; Zawistowski, Jon S.; Singh, Darshan; Sciaky, Noah; Chen, Xin; He, Xiaping; Rashid, Naim U.; Chollet-Hinton, Lynn; Fan, Cheng; Soloway, Matthew G.; Spears, Patricia A.; Jefferys, Stuart; Parker, Joel S.; Gallagher, Kristalyn K.; Forero-Torres, Andres; Krop, Ian E.; Thompson, Alastair M.; Murthy, Rashmi; Gatza, Michael L.; Perou, Charles M.; Earp, H. Shelton; Carey, Lisa A.; Johnson, Gary L.; Pediatrics, School of MedicineInhibition of the HER2/ERBB2 receptor is a keystone to treating HER2-positive malignancies, particularly breast cancer, but a significant fraction of HER2-positive (HER2+) breast cancers recur or fail to respond. Anti-HER2 monoclonal antibodies, like trastuzumab or pertuzumab, and ATP active site inhibitors like lapatinib, commonly lack durability because of adaptive changes in the tumor leading to resistance. HER2+ cell line responses to inhibition with lapatinib were analyzed by RNAseq and ChIPseq to characterize transcriptional and epigenetic changes. Motif analysis of lapatinib-responsive genomic regions implicated the pioneer transcription factor FOXA1 as a mediator of adaptive responses. Lapatinib in combination with FOXA1 depletion led to dysregulation of enhancers, impaired adaptive upregulation of HER3, and decreased proliferation. HER2-directed therapy using clinically relevant drugs (trastuzumab with or without lapatinib or pertuzumab) in a 7-day clinical trial designed to examine early pharmacodynamic response to antibody-based anti-HER2 therapy showed reduced FOXA1 expression was coincident with decreased HER2 and HER3 levels, decreased proliferation gene signatures, and increased immune gene signatures. This highlights the importance of the immune response to anti-HER2 antibodies and suggests that inhibiting FOXA1-mediated adaptive responses in combination with HER2 targeting is a potential therapeutic strategy.Item Molecular classification and biomarkers of clinical outcome in breast ductal carcinoma in situ: Analysis of TBCRC 038 and RAHBT cohorts(Elsevier, 2022-12-12) Strand, Siri H.; Rivero-Gutiérrez, Belén; Houlahan, Kathleen E.; Seoane, Jose A.; King, Lorraine M.; Risom, Tyler; Simpson, Lunden A.; Vennam, Sujay; Khan, Aziz; Cisneros, Luis; Hardman, Timothy; Harmon, Bryan; Couch, Fergus; Gallagher, Kristalyn; Kilgore, Mark; Wei, Shi; DeMichele, Angela; King, Tari; McAuliffe, Priscilla F.; Nangia, Julie; Lee, Joanna; Tseng, Jennifer; Storniolo, Anna Maria; Thompson, Alastair M.; Gupta, Gaorav P.; Burns, Robyn; Veis, Deborah J.; DeSchryver, Katherine; Zhu, Chunfang; Matusiak, Magdalena; Wang, Jason; Zhu, Shirley X.; Tappenden, Jen; Ding, Daisy Yi; Zhang, Dadong; Luo, Jingqin; Jiang, Shu; Varma, Sushama; Anderson, Lauren; Straub, Cody; Srivastava, Sucheta; Curtis, Christina; Tibshirani , Rob; Angelo, Robert Michael; Hall , Allison; Owzar , Kouros; Polyak , Kornelia; Maley, Carlo; Marks, Jeffrey R.; Colditz, Graham A.; Hwang, E. Shelley; West , Robert B.; Medicine, School of MedicineDuctal carcinoma in situ (DCIS) is the most common precursor of invasive breast cancer (IBC), with variable propensity for progression. We perform multiscale, integrated molecular profiling of DCIS with clinical outcomes by analyzing 774 DCIS samples from 542 patients with 7.3 years median follow-up from the Translational Breast Cancer Research Consortium 038 study and the Resource of Archival Breast Tissue cohorts. We identify 812 genes associated with ipsilateral recurrence within 5 years from treatment and develop a classifier that predicts DCIS or IBC recurrence in both cohorts. Pathways associated with recurrence include proliferation, immune response, and metabolism. Distinct stromal expression patterns and immune cell compositions are identified. Our multiscale approach employed in situ methods to generate a spatially resolved atlas of breast precancers, where complementary modalities can be directly compared and correlated with conventional pathology findings, disease states, and clinical outcome.