ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Theisen, Michael"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Antibody Correlates of Protection from Clinical Plasmodium falciparum Malaria in an Area of Low and Unstable Malaria Transmission
    (American Society of Tropical Medicine and Hygiene, 2020-12) Hamre, Karen E.S.; Ondigo, Bartholomew N.; Hodges, James S.; Dutta, Sheetij; Theisen, Michael; Ayodo, George; John, Chandy C.; Pediatrics, School of Medicine
    Immune correlates of protection against clinical malaria are difficult to ascertain in low-transmission areas because of the limited number of malaria cases. We collected blood samples from 5,753 individuals in a Kenyan highland area, ascertained malaria incidence in this population over the next 6 years, and then compared antibody responses to 11 Plasmodium falciparum vaccine candidate antigens in individuals who did versus did not develop clinical malaria in a nested case-control study (154 cases and 462 controls). Individuals were matched by age and village. Antigens tested included circumsporozoite protein (CSP), liver-stage antigen (LSA)-1, apical membrane antigen-1 FVO and 3D7 strains, erythrocyte-binding antigen-175, erythrocyte-binding protein-2, merozoite surface protein (MSP)-1 FVO and 3D7 strains, MSP-3, and glutamate-rich protein (GLURP) N-terminal non-repetitive (R0) and C-terminal repetitive (R2) regions. After adjustment for potential confounding factors, the presence of antibodies to LSA-1, GLURP-R2, or GLURP-R0 was associated with decreased odds of developing clinical malaria (odds ratio [OR], [95% CI] 0.56 [0.36-0.89], 0.56 [0.36-0.87], and 0.77 [0.43-1.02], respectively). Levels of antibodies to LSA-1, GLURP-R2, and CSP were associated with decreased odds of developing clinical malaria (OR [95% CI]; 0.61 [0.41-0.89], 0.60 [0.43-0.84], and 0.49 [0.24-0.99], for every 10-fold increase in antibody levels, respectively). The presence of antibodies to CSP, GLURP-R0, GLURP-R2, and LSA-1 combined best-predicted protection from clinical malaria. Antibodies to CSP, GLURP-R0, GLURP-R2, and LSA-1 are associated with protection against clinical malaria in a low-transmission setting. Vaccines containing these antigens should be evaluated in low malaria transmission areas.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University