- Browse by Author
Browsing by Author "The RISE Consortium"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Baseline Predictors of Glycemic Worsening in Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes in the Restoring Insulin Secretion (RISE) Study(American Diabetes Association, 2021) Sam, Susan; Edelstein, Sharon L.; Arslanian, Silva A.; Barengolts, Elena; Buchanan, Thomas A.; Caprio, Sonia; Ehrmann, David A.; Hannon, Tamara S.; Hogan Tjaden, Ashley; Kahn, Steven E.; Mather, Kieren J.; Tripputi, Mark; Utzschneider, Kristina M.; Xiang, Anny H.; Nadeau, Kristen J.; The RISE Consortium; Pediatrics, School of MedicineObjective: To identify predictors of glycemic worsening among youth and adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes in the Restoring Insulin Secretion (RISE) Study. Research design and methods: A total of 91 youth (10-19 years) were randomized 1:1 to 12 months of metformin (MET) or 3 months of glargine, followed by 9 months of metformin (G-MET), and 267 adults were randomized to MET, G-MET, liraglutide plus MET (LIRA+MET), or placebo for 12 months. All participants underwent a baseline hyperglycemic clamp and a 3-h oral glucose tolerance test (OGTT) at baseline, month 6, month 12, and off treatment at month 15 and month 21. Cox models identified baseline predictors of glycemic worsening (HbA1c increase ≥0.5% from baseline). Results: Glycemic worsening occurred in 17.8% of youth versus 7.5% of adults at month 12 (P = 0.008) and in 36% of youth versus 20% of adults at month 21 (P = 0.002). In youth, glycemic worsening did not differ by treatment. In adults, month 12 glycemic worsening was less on LIRA+MET versus placebo (hazard ratio 0.21, 95% CI 0.05-0.96, P = 0.044). In both age-groups, lower baseline clamp-derived β-cell responses predicted month 12 and month 21 glycemic worsening (P < 0.01). Lower baseline OGTT-derived β-cell responses predicted month 21 worsening (P < 0.05). In youth, higher baseline HbA1c and 2-h glucose predicted month 12 and month 21 glycemic worsening, and higher fasting glucose predicted month 21 worsening (P < 0.05). In adults, lower clamp- and OGTT-derived insulin sensitivity predicted month 12 and month 21 worsening (P < 0.05). Conclusions: Glycemic worsening was more common among youth than adults with IGT or recently diagnosed type 2 diabetes, predicted by lower baseline β-cell responses in both groups, hyperglycemia in youth, and insulin resistance in adults.Item Effect of Medical and Surgical Interventions on α-Cell Function in Dysglycemic Youth and Adults in the RISE Study(American Diabetes Association, 2021) Kahn, Steven E.; Edelstein, Sharon L.; Arslanian, Silva A.; Barengolts, Elena; Caprio, Sonia; Ehrmann, David A.; Hannon, Tamara S.; Marcovina, Santica; Mather, Kieren J.; Nadeau, Kristen J.; Utzschneider, Kristina M.; Xiang, Anny H.; Buchanan, Thomas A.; The RISE Consortium; Pediatrics, School of MedicineObjective: To compare effects of medications and laparoscopic gastric band surgery (LB) on α-cell function in dysglycemic youth and adults in the Restoring Insulin Secretion (RISE) Study protocols. Research design and methods: Glucagon was measured in three randomized, parallel, clinical studies: 1) 91 youth studied at baseline, after 12 months on metformin alone (MET) or glargine followed by metformin (G/M), and 3 months after treatment withdrawal; 2) 267 adults studied at the same time points and treated with MET, G/M, or liraglutide plus metformin (L+M) or given placebo (PLAC); and 3) 88 adults studied at baseline and after 12 and 24 months of LB or MET. Fasting glucagon, glucagon suppression by glucose, and acute glucagon response (AGR) to arginine were assessed during hyperglycemic clamps. Glucagon suppression was also measured during oral glucose tolerance tests (OGTTs). Results: No change in fasting glucagon, steady-state glucagon, or AGR was seen at 12 months following treatment with MET or G/M (in youth and adults) or PLAC (in adults). In contrast, L+M reduced these measures at 12 months (all P ≤ 0.005), which was maintained 3 months after treatment withdrawal (all P < 0.01). LB in adults also reduced fasting glucagon, steady-state glucagon, and AGR at 12 and 24 months (P < 0.05 for all, except AGR at 12 months [P = 0.098]). Similarly, glucagon suppression during OGTTs was greater with L+M and LB. Linear models demonstrated that treatment effects on glucagon with L+M and LB were largely associated with weight loss. Conclusions: Glucagon concentrations were reduced by L+M and LB in adults with dysglycemia, an effect principally attributable to weight loss in both interventions.Item Hyperglucagonemia Does Not Explain the β-Cell Hyperresponsiveness and Insulin Resistance in Dysglycemic Youth Compared With Adults: Lessons From the RISE Study(American Diabetes Association, 2021) Kahn, Steven E.; Mather, Kieren J.; Arslanian, Silva A.; Barengolts, Elena; Buchanan, Thomas A.; Caprio, Sonia; Ehrmann, David A.; Hannon, Tamara S.; Marcovina, Santica; Nadeau, Kristen J.; Utzschneider, Kristina M.; Xiang, Anny H.; Edelstein, Sharon L.; The RISE Consortium; Medicine, School of MedicineObjective: To determine whether β-cell hyperresponsiveness and insulin resistance in youth versus adults in the Restoring Insulin Secretion (RISE) Study are related to increased glucagon release. Research design and methods: In 66 youth and 350 adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes (drug naive), we performed hyperglycemic clamps and oral glucose tolerance tests (OGTTs). From clamps we quantified insulin sensitivity (M/I), plasma fasting glucagon and C-peptide, steady-state glucagon and C-peptide at glucose of 11.1 mmol/L, and arginine-stimulated glucagon (acute glucagon response [AGR]) and C-peptide (ACPRmax) responses at glucose >25 mmol/L. Results: Mean ± SD fasting glucagon (7.63 ± 3.47 vs. 8.55 ± 4.47 pmol/L; P = 0.063) and steady-state glucagon (2.24 ± 1.46 vs. 2.49 ± 1.96 pmol/L, P = 0.234) were not different in youth and adults, respectively, while AGR was lower in youth (14.1 ± 5.2 vs. 16.8 ± 8.8 pmol/L, P = 0.001). Significant age-group differences in insulin sensitivity, fasting C-peptide, steady-state C-peptide, and ACPRmax were not related to glucagon. Fasting glucose and glucagon were positively correlated in adults (r = 0.133, P = 0.012) and negatively correlated in youth (r = -0.143, P = 0.251). In both age-groups, higher fasting glucagon was associated with higher fasting C-peptide (youth r = 0.209, P = 0.091; adults r = 0.335, P < 0.001) and lower insulin sensitivity (youth r = -0.228, P = 0.066; adults r = -0.324, P < 0.001). With comparable fasting glucagon, youth had greater C-peptide and lower insulin sensitivity. OGTT suppression of glucagon was greater in youth. Conclusions: Youth with IGT or recently diagnosed type 2 diabetes (drug naive) have hyperresponsive β-cells and lower insulin sensitivity, but their glucagon concentrations are not increased compared with those in adults. Thus, α-cell dysfunction does not appear to explain the difference in β-cell function and insulin sensitivity in youth versus adults.Item Weight loss and β-cell responses following gastric banding or pharmacotherapy in adults with impaired glucose tolerance or type 2 diabetes: a randomized trial(Wiley, 2022) Utzschneider, Kristina M.; Ehrmann, David A.; Arslanian, Silva A.; Barengolts, Elena; Buchanan, Thomas A.; Caprio, Sonia; Edelstein, Sharon L.; Hannon, Tamara S.; Kahn, Steven E.; Kozedub, Alexandra; Mather, Kieren J.; Nadeau, Kristen J.; Sam, Susan; Tripputi, Mark; Xiang, Anny H.; El ghormli, Laure; The RISE Consortium; Medicine, School of MedicineObjective: The extent to which weight loss contributes to increases in insulin sensitivity (IS) and β-cell function after surgical or medical intervention has not been directly compared in individuals with impaired glucose tolerance or newly diagnosed type 2 diabetes. Methods: The Restoring Insulin Secretion (RISE) Study included adults in the Beta-Cell Restoration Through Fat Mitigation Study (n = 88 randomized to laparoscopic gastric banding or metformin [MET]) and the Adult Medication Study (n = 267 randomized to placebo, MET, insulin glargine/MET, or liraglutide + MET [L + M]). IS and β-cell responses were measured at baseline and after 12 months by modeling of oral glucose tolerance tests and during arginine-stimulated hyperglycemic clamps. Linear regression models assessed differences between and within treatments over time. Results: BMI decreased in all treatment groups, except placebo, at 12 months. IS increased in all arms except placebo and was inversely correlated with changes in BMI. L + M was the only treatment arm that enhanced multiple measures of β-cell function independent of weight loss. Insulin secretion decreased in the laparoscopic gastric banding arm proportional to increases in IS, with no net benefit on β-cell function. Conclusions: Reducing demand on the β-cell by improving IS through weight loss does not reverse β-cell dysfunction. L + M was the only treatment that enhanced β-cell function.