ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tetzlaff, Julie E."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Prevalence of Potentially Clinically Significant Magnetic Resonance Imaging Findings in Athletes with and without Sport-Related Concussion
    (Mary Ann Liebert, 2019-05-22) Klein, Andrew P.; Tetzlaff, Julie E.; Bonis, Joshua M.; Nelson, Lindsay D.; Mayer, Andrew R.; Huber, Daniel L.; Harezlak, Jaroslaw; Mathews, Vincent P.; Ulmer, John L.; Sinson, Grant P.; Nencka, Andrew S.; Koch, Kevin M.; Wu, Yu-Chien; Saykin, Andrew J.; DiFiori, John P.; Giza, Christopher C.; Goldman, Joshua; Guskiewicz, Kevin M.; Mihalik, Jason P.; Duma, Stefan M.; Rowson, Steven; Brooks, Alison; Broglio, Steven P.; McAllister, Thomas; McCrea, Michael A.; Meier, Timothy B.; Radiology and Imaging Sciences, School of Medicine
    Previous studies have shown that mild traumatic brain injury (mTBI) can cause abnormalities in clinically relevant magnetic resonance imaging (MRI) sequences. No large-scale study, however, has prospectively assessed this in athletes with sport-related concussion (SRC). The aim of the current study was to characterize and compare the prevalence of acute, trauma-related MRI findings and clinically significant, non-specific MRI findings in athletes with and without SRC. College and high-school athletes were prospectively enrolled and participated in scanning sessions between January 2015 through August 2017. Concussed contact sport athletes (n = 138; 14 female [F]; 19.5 ± 1.6 years) completed up to four scanning sessions after SRC. Non-concussed contact (n = 135; 15 F; 19.7 ± 1.6) and non-contact athletes (n = 96; 15 F; 20.0 ± 1.7) completed similar scanning sessions and served as controls. Board-certified neuroradiologists, blinded to SRC status, reviewed T1-weighted and T2-weighted fluid-attenuated inversion recovery and T2*-weighted and T2-weighted images for acute (i.e., injury-related) or non-acute findings that prompted recommendation for clinical follow-up. Concussed athletes were more likely to have MRI findings relative to contact (30.4% vs. 15.6%; odds ratio [OR] = 2.32; p = 0.01) and non-contact control athletes (19.8%; OR = 2.11; p = 0.04). Female athletes were more likely to have MRI findings than males (43.2% vs. 19.4%; OR = 2.62; p = 0.01). One athlete with SRC had an acute, injury-related finding; group differences were largely driven by increased rate of non-specific white matter hyperintensities in concussed athletes. This prospective, large-scale study demonstrates that <1% of SRCs are associated with acute injury findings on qualitative structural MRI, providing empirical support for clinical guidelines that do not recommend use of MRI after SRC.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University