- Browse by Author
Browsing by Author "Ter Kuile, Feiko O."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Early malaria infection, dysregulation of angiogenesis, metabolism and inflammation across pregnancy, and risk of preterm birth in Malawi: A cohort study(Public Library of Science, 2019-10-01) Elphinstone, Robyn E.; Weckman, Andrea M.; McDonald, Chloe R.; Tran, Vanessa; Zhong, Kathleen; Madanitsa, Mwayiwawo; Kalilani-Phiri, Linda; Khairallah, Carole; Taylor, Steve M.; Meshnick, Steven R.; Mwapasa, Victor; Ter Kuile, Feiko O.; Conroy, Andrea L.; Kain, Kevin C.; Pediatrics, School of MedicineMalaria in pregnancy is associated with adverse birth outcomes. However, the underlying mechanisms remain poorly understood. Tight regulation of angiogenic, metabolic, and inflammatory pathways are essential for healthy pregnancies. We hypothesized that malaria disrupts these pathways leading to preterm birth (PTB). Methods and findings We conducted a secondary analysis of a randomized trial of malaria prevention in pregnancy conducted in Malawi from July 21, 2011, to March 18, 2013. We longitudinally assessed circulating mediators of angiogenic, metabolic, and inflammatory pathways during pregnancy in a cohort of HIV-negative women (n = 1,628), with a median age of 21 years [18, 25], and 562 (35%) were primigravid. Pregnancies were ultrasound dated, and samples were analyzed at 13 to 23 weeks (Visit 1), 28 to 33 weeks (Visit 2), and/or 34 to 36 weeks (Visit 3). Malaria prevalence was high; 70% (n = 1,138) had PCR-positive Plasmodium falciparum infection at least once over the course of pregnancy and/or positive placental histology. The risk of delivering preterm in the entire cohort was 20% (n = 304/1506). Women with malaria before 24 weeks gestation had a higher risk of PTB (24% versus 18%, p = 0.005; adjusted relative risk [aRR] 1.30, 95% confidence interval [CI] 1.04–1.63, p = 0.021); and those who were malaria positive only before week 24 had an even greater risk of PTB (28% versus 17%, p = 0.02; with an aRR of 1.67, 95% CI 1.20–2.30, p = 0.002). Using linear mixed-effects modeling, malaria before 24 weeks gestation was associated with altered kinetics of inflammatory (C-Reactive Protein [CRP], Chitinase 3-like protein-1 [CHI3L1], Interleukin 18 Binding Protein [IL-18BP], soluble Tumor Necrosis Factor receptor II [sTNFRII], soluble Intercellular Adhesion Molecule-1 [sICAM-1]), angiogenic (soluble Endoglin [sEng]), and metabolic mediators (Leptin, Angiopoietin-like 3 [Angptl3]) over the course of pregnancy (χ2 > 13.0, p ≤ 0.001 for each). Limitations include being underpowered to assess the impact on nonviable births, being unable to assess women who had not received any antimalarials, and, because of the exposure to antimalarials in the second trimester, there were limited numbers of malaria infections late in pregnancy. Conclusions Current interventions for the prevention of malaria in pregnancy are initiated at the first antenatal visit, usually in the second trimester. In this study, we found that many women are already malaria-infected by their first visit. Malaria infection before 24 weeks gestation was associated with dysregulation of essential regulators of angiogenesis, metabolism, and inflammation and an increased risk of PTB. Preventing malaria earlier in pregnancy may reduce placental dysfunction and thereby improve birth outcomes in malaria-endemic settings.Item Malaria Chemoprevention in the Postdischarge Management of Severe Anemia(Massachusetts Medical Society, 2020-12-03) Kwambai, Titus K.; Dhabangi, Aggrey; Idro, Richard; Opoka, Robert; Watson, Victoria; Kariuki, Simon; Onyango, Eric D.; Otieno, Kephas; Samuels, Aaron M.; Desai, Meghna R.; Boele van Hensbroek, Michael; Wang, Duolao; John, Chandy C.; Robberstad, Bjarne; Phiri, Kamija S.; Ter Kuile, Feiko O.; Pediatrics, School of MedicineBACKGROUND: Children who have been hospitalized with severe anemia in areas of Africa in which malaria is endemic have a high risk of readmission and death within 6 months after discharge. No prevention strategy specifically addresses this period. METHODS: We conducted a multicenter, two-group, randomized, placebo-controlled trial in nine hospitals in Kenya and Uganda to determine whether 3 months of malaria chemoprevention could reduce morbidity and mortality after hospital discharge in children younger than 5 years of age who had been admitted with severe anemia. All children received standard in-hospital care for severe anemia and a 3-day course of artemether-lumefantrine at discharge. Two weeks after discharge, children were randomly assigned to receive dihydroartemisinin-piperaquine (chemoprevention group) or placebo, administered as 3-day courses at 2, 6, and 10 weeks after discharge. Children were followed for 26 weeks after discharge. The primary outcome was one or more hospital readmissions for any reason or death from the time of randomization to 6 months after discharge. Conditional risk-set modeling for recurrent events was used to calculate hazard ratios with the use of the Prentice-Williams-Peterson total-time approach. RESULTS: From May 2016 through May 2018, a total of 1049 children underwent randomization; 524 were assigned to the chemoprevention group and 525 to the placebo group. From week 3 through week 26, a total of 184 events of readmission or death occurred in the chemoprevention group and 316 occurred in the placebo group (hazard ratio, 0.65; 95% confidence interval [CI], 0.54 to 0.78; P<0.001). The lower incidence of readmission or death in the chemoprevention group than in the placebo group was restricted to the intervention period (week 3 through week 14) (hazard ratio, 0.30; 95% CI, 0.22 to 0.42) and was not sustained after that time (week 15 through week 26) (hazard ratio, 1.13; 95% CI, 0.87 to 1.47). No serious adverse events were attributed to dihydroartemisinin-piperaquine. CONCLUSIONS: In areas with intense malaria transmission, 3 months of postdischarge malaria chemoprevention with monthly dihydroartemisinin-piperaquine in children who had recently received treatment for severe anemia prevented more deaths or readmissions for any reason after discharge than placebo. (Funded by the Research Council of Norway and the Centers for Disease Control and Prevention; ClinicalTrials.gov number, NCT02671175.).Item Malaria chemoprevention with monthly dihydroartemisinin-piperaquine for the post-discharge management of severe anaemia in children aged less than 5 years in Uganda and Kenya: study protocol for a multi-centre, two-arm, randomised, placebo-controlled, superiority trial(BMC, 2018-11-06) Kwambai, Titus K.; Dhabangi, Aggrey; Idro, Richard; Opoka, Robert; Kariuki, Simon; Samuels, Aaron M.; Desai, Meghna; van Hensbroek, Michael Boele; John, Chandy C.; Robberstad, Bjarne; Wang, Duolao; Phiri, Kamija; Ter Kuile, Feiko O.; Pediatrics, School of MedicineBACKGROUND: Children hospitalised with severe anaemia in malaria endemic areas in Africa are at high risk of readmission or death within 6 months post-discharge. Currently, no strategy specifically addresses this period. In Malawi, 3 months of post-discharge malaria chemoprevention (PMC) with monthly treatment courses of artemether-lumefantrine given at discharge and at 1 and 2 months prevented 30% of all-cause readmissions by 6 months post-discharge. Another efficacy trial is needed before a policy of malaria chemoprevention can be considered for the post-discharge management of severe anaemia in children under 5 years of age living in malaria endemic areas. OBJECTIVE: We aim to determine if 3 months of PMC with monthly 3-day treatment courses of dihydroartemisinin-piperaquine is safe and superior to a single 3-day treatment course with artemether-lumefantrine provided as part of standard in-hospital care in reducing all-cause readmissions and deaths (composite primary endpoint) by 6 months in the post-discharge management of children less than 5 years of age admitted with severe anaemia of any or undetermined cause. METHODS/DESIGN: This is a multi-centre, two-arm, placebo-controlled, individually randomised trial in children under 5 years of age recently discharged following management for severe anaemia. Children in both arms will receive standard in-hospital care for severe anaemia and a 3-day course of artemether-lumefantrine at discharge. At 2 weeks after discharge, surviving children will be randomised to receive either 3-day courses of dihydroartemisinin-piperaquine at 2, 6 and 10 weeks or an identical placebo and followed for 26 weeks through passive case detection. The trial will be conducted in hospitals in malaria endemic areas in Kenya and Uganda. The study is designed to detect a 25% reduction in the incidence of all-cause readmissions or death (composite primary outcome) from 1152 to 864 per 1000 child years (power 80%, α = 0.05) and requires 520 children per arm (1040 total children). RESULTS: Participant recruitment started in May 2016 and is ongoing.Item Post-discharge malaria chemoprevention in children admitted with severe anaemia in malaria-endemic settings in Africa: a systematic review and individual patient data meta-analysis of randomised controlled trials(Elsevier, 2024) Phiri, Kamija S.; Khairallah, Carole; Kwambai, Titus K.; Bojang, Kalifa; Dhabangi, Aggrey; Opoka, Robert; Idro, Richard; Stepniewska, Kasia; van Hensbroek, Michael Boele; John, Chandy C.; Robberstad, Bjarne; Greenwood, Brian; Ter Kuile, Feiko O.; Pediatrics, School of MedicineBackground: Severe anaemia is associated with high in-hospital mortality among young children. In malaria-endemic areas, surviving children also have an increased risk of mortality or readmission after hospital discharge. We conducted a systematic review and individual patient data meta-analysis to determine the efficacy of monthly post-discharge malaria chemoprevention in children recovering from severe anaemia. Methods: This analysis was conducted according to PRISMA-IPD guidelines. We searched multiple databases on Aug 28, 2023, without date or language restrictions, for randomised controlled trials comparing monthly post-discharge malaria chemoprevention with placebo or standard of care among children (aged <15 years) admitted with severe anaemia in malaria-endemic Africa. Trials using daily or weekly malaria prophylaxis were not eligible. The investigators from all eligible trials shared pseudonymised datasets, which were standardised and merged for analysis. The primary outcome was all-cause mortality during the intervention period. Analyses were performed in the modified intention-to-treat population, including all randomly assigned participants who contributed to the endpoint. Fixed-effects two-stage meta-analysis of risk ratios (RRs) was used to generate pooled effect estimates for mortality. Recurrent time-to-event data (readmissions or clinic visits) were analysed using one-stage mixed-effects Prentice-Williams-Peterson total-time models to obtain hazard ratios (HRs). This study is registered with PROSPERO, CRD42022308791. Findings: Our search identified 91 articles, of which 78 were excluded by title and abstract, and a further ten did not meet eligibility criteria. Three double-blind, placebo-controlled trials, including 3663 children with severe anaemia, were included in the systematic review and meta-analysis; 3507 (95·7%) contributed to the modified intention-to-treat analysis. Participants received monthly sulfadoxine-pyrimethamine until the end of the malaria transmission season (mean 3·1 courses per child [range 1-6]; n=1085; The Gambia), monthly artemether-lumefantrine given at the end of weeks 4 and 8 post discharge (n=1373; Malawi), or monthly dihydroartemisinin-piperaquine given at the end of weeks 2, 6, and 10 post discharge (n=1049; Uganda and Kenya). During the intervention period, post-discharge malaria chemoprevention was associated with a 77% reduction in mortality (RR 0·23 [95% CI 0·08-0·70], p=0·0094, I2=0%) and a 55% reduction in all-cause readmissions (HR 0·45 [95% CI 0·36-0·56], p<0·0001) compared with placebo. The protective effect was restricted to the intervention period and was not sustained after the direct pharmacodynamic effect of the drugs had waned. The small number of trials limited our ability to assess heterogeneity, its sources, and publication bias. Interpretation: In malaria-endemic Africa, post-discharge malaria chemoprevention reduces mortality and readmissions in recently discharged children recovering from severe anaemia. Post-discharge malaria chemoprevention could be a valuable strategy for the management of this group at high risk. Future research should focus on methods of delivery, options to prolong the protection duration, other hospitalised groups at high risk, and interventions targeting non-malarial causes of post-discharge morbidity.Item Sequential disruptions to inflammatory and angiogenic pathways and risk of spontaneous preterm birth in Malawian women(Elsevier, 2023-05-19) Weckman, Andrea M.; Elphinstone, Robyn E.; Ssenkusu, John M.; Tran, Vanessa; Zhong, Kathleen; Madanitsa, Mwayiwawo; Khairallah, Carole; Kalilani-Phiri, Linda; Mwapasa, Victor; Conroy, Andrea L.; Ter Kuile, Feiko O.; McDonald, Chloe R.; Kain, Kevin C.; Pediatrics, School of MedicinePreterm birth is a leading cause of death in children under five years of age. We hypothesized that sequential disruptions to inflammatory and angiogenic pathways during pregnancy increase the risk of placental insufficiency and spontaneous preterm labor and delivery. We conducted a secondary analysis of inflammatory and angiogenic analytes measured in plasma samples collected across pregnancy from 1462 Malawian women. Women with concentrations of the inflammatory markers sTNFR2, CHI3L1, and IL18BP in the highest quartile before 24 weeks gestation and women with anti-angiogenic factors sEndoglin and sFlt-1/PlGF ratio in the highest quartile at 28-33 weeks gestation had an increased relative risk of preterm birth. Mediation analysis further supported a potential causal link between early inflammation, subsequent angiogenic dysregulation detrimental to placental vascular development, and earlier gestational age at delivery. Interventions designed to reduce the burden of preterm birth may need to be implemented before 24 weeks of gestation.