- Browse by Author
Browsing by Author "Ten Haken, Randall K."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Effect of Midtreatment PET/CT-Adapted Radiation Therapy With Concurrent Chemotherapy in Patients With Locally Advanced Non–Small-Cell Lung Cancer(American Medical Association, 2017-10-01) Kong, Feng-Ming; Ten Haken, Randall K.; Schipper, Matthew; Frey, Kirk A.; Hayman, James; Gross, Milton; Ramnath, Nithya; Hassan, Khaled A.; Matuszak, Martha; Ritter, Timothy; Bi, Nan; Wang, Weili; Orringer, Mark; Cease, Kemp B.; Lawrence, Theodore S.; Kalemkerian, Gregory P.; Radiation Oncology, School of MedicineIMPORTANCE Our previous studies demonstrated that tumors significantly decrease in size and metabolic activity after delivery of 45 Gy of fractionated radiatiotherapy (RT), and that metabolic shrinkage is greater than anatomic shrinkage. This study aimed to determine whether 18F-fludeoxyglucose–positron emission tomography/computed tomography (FDG-PET/CT) acquired during the course of treatment provides an opportunity to deliver higher-dose radiation to the more aggressive areas of the tumor to improve local tumor control without increasing RT-induced lung toxicity (RILT), and possibly improve survival. OBJECTIVE To determine whether adaptive RT can target high-dose radiation to the FDG-avid tumor on midtreatment FDG-PET to improve local tumor control of locally advanced non–small-cell lung cancer (NSCLC). DESIGN, SETTING, AND PARTICIPANTS A phase 2 clinical trial conducted at 2 academic medical centers with 42 patients who had inoperable or unresectable stage II to stage III NSCLC enrolled from November 2008, to May 2012. Patients with poor performance, more than 10% weight loss, poor lung function, and/or oxygen dependence were included, providing that the patients could tolerate the procedures of PET scanning and RT. INTERVENTION Conformal RT was individualized to a fixed risk of RILT (grade >2) and adaptively escalated to the residual tumor defined on midtreatment FDG-PET up to a total dose of 86 Gy in 30 daily fractions. Medically fit patients received concurrent weekly carboplatin plus paclitaxel followed by 3 cycles of consolidation. MAIN OUTCOMES AND MEASURES The primary end point was local tumor control. The trial was designed to achieve a 20% improvement in 2-year control from 34% of our prior clinical trial experience with 63 to 69 Gy in a similar patient population. RESULTS The trial reached its accrual goal of 42 patients: median age, 63 years (range, 45–83 years); male, 28 (67%); smoker or former smoker, 39 (93%); stage III, 38 (90%). Median tumor dose delivered was 83 Gy (range, 63–86 Gy) in 30 daily fractions. Median follow-up for surviving patients was 47 months. The 2-year rates of infield and overall local regional tumor controls (ie, including isolated nodal failure) were 82% (95% CI, 62%–92%) and 62% (95% CI, 43%–77%), respectively. Median overall survival was 25 months (95% CI, 12–32 months). The 2-year and 5-year overall survival rates were 52% (95% CI, 36%–66%) and 30% (95% CI, 16%–45%), respectively. CONCLUSIONS AND RELEVANCE Adapting RT-escalated radiation dose to the FDG-avid tumor detected by midtreatment PET provided a favorable local-regional tumor control. The RTOG 1106 trial is an ongoing clinical trial to validate this finding in a randomized fashion. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01190527Item Greater Reduction in Mid-treatment FDG-PET Volume May Be Associated with Worse Survival in Non-Small Cell Lung Cancer(Elsevier, 2019-03) Kong, Feng-Ming (Spring); Li, Ling; Wang, Weili; Campbell, Jeff; Waller, Jennifer L.; Piert, Morand; Gross, Milton; Cheng, Monica; Owen, Dawn; Stenmark, Matthew; Huang, Colin; Frey, Kirk A.; Ten Haken, Randall K.; Lawrence, Theodore S.; Radiation Oncology, School of MedicineBackground and purpose: This study tested the hypotheses that 1) changes in mid-treatment fluorodeoxyglucose (FDG)-positron emission tomography (PET) parameters are predictive of overall survival (OS) and 2) mid-treatment FDG-PET-adapted treatment has the potential to improve survival in patients with non-small cell lung cancer (NSCLC). Material and methods: Patients with stage I-III NSCLC requiring daily fractionated radiation were eligible. FDG-PET-CT scans were obtained prior to and mid-treatment with radiotherapy at 40-50 Gy. The normalized maximum standardized uptake value (NSUVmax), normalized mean SUV (NSUVmean), PET-metabolic tumor volume (MTV), total lesion glycolysis (TLG), and computed tomography-based gross tumor volume (CT-GTV) were consistently measured for all patients. The primary study endpoint was OS. Results: The study is comprised of 102 patients who received 3-dimensional conformal radiotherapy, among whom 30 patients who received mid-treatment PET-adapted dose escalation radiotherapy. All PET-CT parameters decreased significantly (P < 0.001) mid-treatment, with greater reductions in FDG-volumetric parameters compared to FDG-activity factors. Mid-treatment changes in MTV (P = 0.053) and TLG (P = 0.021) were associated with OS, while changes in NSUVmax, NSUVmean, and CT-GTV were not (all Ps>0.1). Patients receiving conventional radiation (60-70 Gy) with MTV reductions greater than the mean had a median survival of 14 months, compared to those with MTV reductions less than the mean who had a median survival of 22 months. By contrast, patients receiving mid-treatment PET-adapted radiation with MTV reductions greater than the mean had a median survival of 33 months, compared to those with MTV reductions less than the mean who had a median survival of 19 months. Overall, PET-adapted treatment resulted in a 19% better 5-year survival than conventional radiation. Conclusion: Changes in mid-treatment PET-volumetric parameters were significantly associated with survival in NSCLC. A greater reduction in the mid-treatment MTV was associated with worse survival in patients treated with standard radiation, but with better survival in patients who received mid-treatment PET-adapted treatment.Item A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer(Elsevier, 2018-03) Wang, Shulian; Campbell, Jeff; Stenmark, Matthew H.; Stanton, Paul; Zhao, Jing; Matuszak, Martha M.; Ten Haken, Randall K.; Kong, Feng-Ming; Radiation Oncology, School of MedicineBackground and purpose To study whether cytokine markers may improve predictive accuracy of radiation esophagitis (RE) in non-small cell lung cancer (NSCLC) patients. Materials and methods A total of 129 patients with stage I-III NSCLC treated with radiotherapy (RT) from prospective studies were included. Thirty inflammatory cytokines were measured in platelet-poor plasma samples. Logistic regression was performed to evaluate the risk factors of RE. Stepwise Akaike information criterion (AIC) and likelihood ratio test were used to assess model predictions. Results Forty-nine of 129 patients (38.0%) developed grade ≥2 RE. Univariate analysis showed that age, stage, concurrent chemotherapy, and eight dosimetric parameters were significantly associated with grade ≥2 RE (p < 0.05). IL-4, IL-5, IL-8, IL-13, IL-15, IL-1α, TGFα and eotaxin were also associated with grade ≥2 RE (p <0.1). Age, esophagus generalized equivalent uniform dose (EUD), and baseline IL-8 were independently associated grade ≥2 RE. The combination of these three factors had significantly higher predictive power than any single factor alone. Addition of IL-8 to toxicity model significantly improves RE predictive accuracy (p = 0.019). Conclusions Combining baseline level of IL-8, age and esophagus EUD may predict RE more accurately. Refinement of this model with larger sample sizes and validation from multicenter database are warranted.Item Modeling Patient-Specific Dose-Function Response for Enhanced Characterization of Personalized Functional Damage(Elsevier, 2018-11-15) Rocky Owen, Daniel; Boonstra, Phillip S.; Viglianti, Benjamin L.; Balter, James M.; Schipper, Matthew J.; Jackson, William C.; El Naqa, Issam; Jolly, Shruti; Ten Haken, Randall K.; Spring Kong, Feng-Ming; Matuszak, Martha M.; Radiation Oncology, School of MedicinePURPOSE: Functional-guided radiation therapy (RT) plans have the potential to limit damage to normal tissue and reduce toxicity. Although functional imaging modalities have continued to improve, a limited understanding of the functional response to radiation and its application to personalized therapy has hindered clinical implementation. The purpose of this study was to retrospectively model the longitudinal, patient-specific dose-function response in non-small cell lung cancer patients treated with RT to better characterize the expected functional damage in future, unknown patients. METHODS AND MATERIALS: Perfusion single-photon emission computed tomography/computed tomography scans were obtained at baseline (n = 81), midtreatment (n = 74), 3 months post-treatment (n = 51), and 1 year post-treatment (n = 26) and retrospectively analyzed. Patients were treated with conventionally fractionated RT or stereotactic body RT. Normalized perfusion single-photon emission computed tomography voxel intensity was used as a surrogate for local lung function. A patient-specific logistic model was applied to each individual patient's dose-function response to characterize functional reduction at each imaging time point. Patient-specific model parameters were averaged to create a population-level logistic dose-response model. RESULTS: A significant longitudinal decrease in lung function was observed after RT by analyzing the voxelwise change in normalized perfusion intensity. Generated dose-function response models represent the expected voxelwise reduction in function, and the associated uncertainty, for an unknown patient receiving conventionally fractionated RT or stereotactic body RT. Differential treatment responses based on the functional status of the voxel at baseline suggest that initially higher functioning voxels are damaged at a higher rate than lower functioning voxels. CONCLUSIONS: This study modeled the patient-specific dose-function response in patients with non-small cell lung cancer during and after radiation treatment. The generated population-level dose-function response models were derived from individual patient assessment and have the potential to inform functional-guided treatment plans regarding the expected functional lung damage. This type of patient-specific modeling approach can be applied broadly to other functional response analyses to better capture intrapatient dependencies and characterize personalized functional damage.Item A Multi-Objective Bayesian Networks Approach for Joint Prediction of Tumor Local Control and Radiation Pneumonitis in Non-Small-Cell Lung Cancer (NSCLC) for Response-Adapted Radiotherapy(Wiley, 2018) Luo, Yi; McShan, Daniel L.; Matuszak, Martha M.; Ray, Dipankar; Lawrence, Thodore S.; Jolly, Shruti; Kong, Feng-Ming; Ten Haken, Randall K.; El Naqa, Issam; Radiation Oncology, School of MedicinePurpose Individualization of therapeutic outcomes in NSCLC radiotherapy is likely to be compromised by the lack of proper balance of biophysical factors affecting both tumor local control (LC) and side effects such as radiation pneumonitis (RP), which are likely to be intertwined. Here, we compare the performance of separate and joint outcomes predictions for response‐adapted personalized treatment planning. Methods A total of 118 NSCLC patients treated on prospective protocols with 32 cases of local progression and 20 cases of RP grade 2 or higher (RP2) were studied. Sixty‐eight patients with 297 features before and during radiotherapy were used for discovery and 50 patients were reserved for independent testing. A multiobjective Bayesian network (MO‐BN) approach was developed to identify important features for joint LC/RP2 prediction using extended Markov blankets as inputs to develop a BN predictive structure. Cross‐validation (CV) was used to guide the MO‐BN structure learning. Area under the free‐response receiver operating characteristic (AU‐FROC) curve was used to evaluate joint prediction performance. Results Important features including single nucleotide polymorphisms (SNPs), micro RNAs, pretreatment cytokines, pretreatment PET radiomics together with lung and tumor gEUDs were selected and their biophysical inter‐relationships with radiation outcomes (LC and RP2) were identified in a pretreatment MO‐BN. The joint LC/RP2 prediction yielded an AU‐FROC of 0.80 (95% CI: 0.70–0.86) upon internal CV. This improved to 0.85 (0.75–0.91) with additional two SNPs, changes in one cytokine and two radiomics PET image features through the course of radiotherapy in a during‐treatment MO‐BN. This MO‐BN model outperformed combined single‐objective Bayesian networks (SO‐BNs) during‐treatment [0.78 (0.67–0.84)]. AU‐FROC values in the evaluation of the MO‐BN and individual SO‐BNs on the testing dataset were 0.77 and 0.68 for pretreatment, and 0.79 and 0.71 for during‐treatment, respectively. Conclusions MO‐BNs can reveal possible biophysical cross‐talks between competing radiotherapy clinical endpoints. The prediction is improved by providing additional during‐treatment information. The developed MO‐BNs can be an important component of decision support systems for personalized response‐adapted radiotherapy.Item Prediction of Radiation Esophagitis in Non-Small Cell Lung Cancer Using Clinical Factors, Dosimetric Parameters, and Pretreatment Cytokine Levels(Elsevier, 2018-02) Hawkins, Peter G.; Boonstra, Philip S.; Hobson, Stephen T.; Hayman, James A.; Ten Haken, Randall K.; Matuszak, Martha M.; Stanton, Paul; Kalemkerian, Gregory P.; Lawrence, Theodore S.; Schipper, Matthew J.; Kong, Feng-Ming (Spring); Jolly, Shruti; Radiation Oncology, School of MedicineRadiation esophagitis (RE) is a common adverse event associated with radiotherapy for non-small cell lung cancer (NSCLC). While plasma cytokine levels have been correlated with other forms of radiation-induced toxicity, their association with RE has been less well studied. We analyzed data from 126 patients treated on 4 prospective clinical trials. Logistic regression models based on combinations of dosimetric factors [maximum dose to 2 cubic cm (D2cc) and generalized equivalent uniform dose (gEUD)], clinical variables, and pretreatment plasma levels of 30 cytokines were developed. Cross-validated estimates of area under the receiver operating characteristic curve (AUC) and log likelihood were used to assess prediction accuracy. Dose-only models predicted grade 3 RE with AUC values of 0.750 (D2cc) and 0.727 (gEUD). Combining clinical factors with D2cc increased the AUC to 0.779. Incorporating pretreatment cytokine measurements, modeled as direct associations with RE and as potential interactions with the dose-esophagitis association, produced AUC values of 0.758 and 0.773, respectively. D2cc and gEUD correlated with grade 3 RE with odds ratios (ORs) of 1.094/Gy and 1.096/Gy, respectively. Female gender was associated with a higher risk of RE, with ORs of 1.09 and 1.112 in the D2cc and gEUD models, respectively. Older age was associated with decreased risk of RE, with ORs of 0.992/year and 0.991/year in the D2cc and gEUD models, respectively. Combining clinical with dosimetric factors but not pretreatment cytokine levels yielded improved prediction of grade 3 RE compared to prediction by dose alone. Such multifactorial modeling may prove useful in directing radiation treatment planning.