- Browse by Author
Browsing by Author "Tee, Andrew R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Correction: Exploring transcriptional regulators Ref-1 and STAT3 as therapeutic targets in malignant peripheral nerve sheath tumours(Springer Nature, 2022) Gampala, Silpa; Shah, Fenil; Zhang, Chi; Rhodes, Steven D.; Babb, Olivia; Grimard, Michelle; Wireman, Randall S.; Rad, Ellie; Calver, Brian; Bai, Ren-Yuan; Staedtke, Verena; Hulsey, Emily L.; Saadatzadeh, M. Reza; Pollok, Karen E.; Tong, Yan; Smith, Abbi E.; Clapp, D. Wade; Tee, Andrew R.; Kelley, Mark R.; Fishel, Melissa L.; Pediatrics, School of MedicineCorrection to: British Journal of Cancer 10.1038/s41416-021-01270-8, published online 03 March 2021 The original version of this article unfortunately contained an error in Figure 4, specifically: Figure 4f: the middle cell image was originally a duplicate of the middle cell image from Fig. 4d; the correct image is now used. The corrected figure is displayed below. The correction does not have any effect on the final conclusions of the paper. The original article has been corrected.Item Drug Inhibition of Redox Factor-1 Restores Hypoxia-Driven Changes in Tuberous Sclerosis Complex 2 Deficient Cells(MDPI, 2022-12-15) Champion, Jesse D.; Dodd, Kayleigh M.; Lam, Hilaire C.; Alzahrani, Mohammad A. M.; Seifan, Sara; Rad, Ellie; Scourfield, David Oliver; Fishel, Melissa L.; Calver, Brian L.; Ager, Ann; Henske, Elizabeth P.; Davies, David Mark; Kelley, Mark R.; Tee, Andrew R.; Pediatrics, School of MedicineTherapies with the mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for tuberous sclerosis complex (TSC) patients. Here, we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses a redox signaling activity that stimulates the transcriptional activity of STAT3, NF-kB, and HIF-1α, which are involved in inflammation, proliferation, angiogenesis, and hypoxia, respectively. Here, we demonstrate that redox signaling through Ref-1 contributes to metabolic transformation and tumor growth in TSC cell model systems. In TSC2-deficient cells, the clinically viable Ref-1 inhibitor APX3330 was effective at blocking the hyperactivity of STAT3, NF-kB, and HIF-1α. While Ref-1 inhibitors do not inhibit mTORC1, they potently block cell invasion and vasculature mimicry. Of interest, we show that cell invasion and vasculature mimicry linked to Ref-1 redox signaling are not blocked by mTORC1 inhibitors. Metabolic profiling revealed that Ref-1 inhibitors alter metabolites associated with the glutathione antioxidant pathway as well as metabolites that are heavily dysregulated in TSC2-deficient cells involved in redox homeostasis. Therefore, this work presents Ref-1 and associated redox-regulated transcription factors such as STAT3, NF-kB, and HIF-1α as potential therapeutic targets to treat TSC, where targeting these components would likely have additional benefits compared to using mTORC1 inhibitors alone.Item Exploring transcriptional regulators Ref-1 and STAT3 as therapeutic targets in malignant peripheral nerve sheath tumours(Springer Nature, 2021) Gampala, Silpa; Shah, Fenil; Zhang, Chi; Rhodes, Steven D.; Babb, Olivia; Grimard, Michelle; Wireman, Randall S.; Rad, Ellie; Calver, Brian; Bai, Ren-Yuan; Staedtke, Verena; Hulsey, Emily L.; Saadatzadeh, M. Reza; Pollok, Karen E.; Tong, Yan; Smith, Abbi E.; Clapp, D. Wade; Tee, Andrew R.; Kelley, Mark R.; Fishel, Melissa L.; Pediatrics, School of MedicineBackground: MPNST is a rare soft-tissue sarcoma that can arise from patients with NF1. Existing chemotherapeutic and targeted agents have been unsuccessful in MPNST treatment, and recent findings implicate STAT3 and HIF1-α in driving MPNST. The DNA-binding and transcriptional activity of both STAT3 and HIF1-α is regulated by Redox factor-1 (Ref-1) redox function. A first-generation Ref-1 inhibitor, APX3330, is being tested in cancer clinical trials and could be applied to MPNST. Methods: We characterised Ref-1 and p-STAT3 expression in various MPNST models. Tumour growth, as well as biomarkers of apoptosis and signalling pathways, were measured by qPCR and western blot following treatment with inhibitors of Ref-1 or STAT3. Results: MPNSTs from Nf1-Arfflox/floxPostnCre mice exhibit significantly increased positivity of p-STAT3 and Ref-1 expression when malignant transformation occurs. Inhibition of Ref-1 or STAT3 impairs MPNST growth in vitro and in vivo and induces apoptosis. Genes highly expressed in MPNST patients are downregulated following inhibition of Ref-1 or STAT3. Several biomarkers downstream of Ref-1 or STAT3 were also downregulated following Ref-1 or STAT3 inhibition. Conclusions: Our findings implicate a unique therapeutic approach to target important MPNST signalling nodes in sarcomas using new first-in-class small molecules for potential translation to the clinic.