- Browse by Author
Browsing by Author "Tedesco, Lenore P."
Now showing 1 - 10 of 22
Results Per Page
Sort Options
Item Applied Solutions for Water Resource Challenges: Floods, Contamination and Upland Water Storage(Office of the Vice Chancellor for Research, 2011-04-08) Smith, Amy; Tedesco, Lenore P.; Babbar-Sebens, Meghna; Barr, Robert C.; Hall, Bob E.; Stouder, MichaelThe Center for Earth and Environmental Science, an IUPUI Signature Center, is working on a series of water resources problems and creating solutions. A series of collaborative projects are underway with the HUD, FEMA, the Office of Community and Rural Affairs, the United States Geological Survey, the Indiana State Department of Agriculture, and an international corporate partner in Berlin, KompetenzZentrum Wasser Berlin. Flood Erosion Hazard Program CEES, the USGS, and Polis are working with HUD and the Office of Community and Rural Affairs, though the Indiana Silver Jackets, to create tools for the State of Indiana to incorporate flood erosion hazard risk assessments into community planning. Flooding remains the most costly natural hazard in the US and Indiana. Flood losses continue to rise despite billions of dollars in mitigation. The causes are complex and related to land use, infrastructure design and climate change. Following the June 2008 floods in Indiana, 39 counties were listed as Federal disaster areas. In early 2005, 90% of Indiana counties were declared federal disaster areas after heavy rains fell on saturated soil. There have been seven major regional flooding events since the “Great flood of 1913”. The frequency of large floods appears to be increasing. Four of the eight major floods have occurred since 1982 and the last two occurred in 2005 and 2008. From 1998 through 2007, total insured flood losses in Indiana exceeded $39.8 million. While more restricted in area than the floods of 2008; record flooding occurred again throughout central and southern Indiana in early 2011 following heavy rains in February and March. Traditional flood protection usually consists of three components: flood control reservoirs, urban levees/floodwalls, and agricultural levees. These traditional flood protection methods are focused on one aspect of flooding – inundation. However, the largest single source of flood losses, both in terms of cost and number of affected persons, is damage to transportation infrastructure. Fluvial erosion is a principal cause of this damage. This significant flood-related natural hazard – the “fluvial erosion hazard” (FEH) – is not a specific component of State and local mitigation programs. This project aims to generate the tools for inclusion of FEH into statewide and local community planning. Aquisafe II - Performance Analysis of Selected Mitigation Systems Used to Attenuate Non-Point Source Agricultural Pollution Aquisafe is an international research collaboration with Veolia Environment based in Paris, their corporate partner in Berlin (KompetenzZentrum Wasser – Berlin Center of Competence for Water), the German Federal Environmental Agency, German university partners, and French quasi-governmental agencies in Brittany, France. The project goals are to create new mitigation systems to capture and treat polluted agricultural water running off farm fields prior to flowing into area streams, especially those used for drinking water supplies. The contaminants of specific concern are nutrients (nitrogen and phosphorus) and pesticides (atrazine – a corn-herbicide with potential endocrine disrupting effects). We are testing 2-stage, constructed wetlands in Indianapolis, Indiana and Brittany, France that have been designed to intercept and convert contaminants to harmless compounds. Site designs are guided by laboratory technical scale experiments conducted in Berlin that identified the hydrologic retention times and suitable sources of organic carbon necessary for mitigating contaminants. Construction of the experimental systems will begin in April in the Eagle Creek Watershed in cooperation with a private farmer with initial results expected this summer.Item ASSESSING THE ROLE OF GEOLOGIC SETTING ON THE HYDROLOGY AND GROUND WATER GEOCHEMISTRY OF FENS IN THE GLACIATED MIDWESTERN UNITED STATES(2007-04-09T15:32:10Z) Graves, Dustin; Tedesco, Lenore P.; Vidon, Philippe G.; Jacinthe, Pierre-AndreABSTRACT Dustin Graves ASSESSING THE ROLE OF GEOLOGIC SETTING ON THE HYDROLOGY AND GROUND WATER GEOCHEMISTRY OF FENS IN THE GLACIATED MIDWESTERN UNITED STATES A water quality investigation of several fens located in the temperate glaciated Midwestern United States, near the southern limit of fen occurrence, was conducted to assess the role of geologic setting on the hydrogeochemical signature of fens and to compare hydrogeochemistry of fens located in different geographic and geologic settings. The five studied fens, located in the Central Till Plain physiographic region of Indiana, receive ground water sourced from glacial tills with very similar petrologic composition. These wetlands are hydrogeomorphically classified as slope wetlands with dominant ground water input. More specifically, these sites are inter-till / intra-till type fens (Type Ia and Ib) or outwash terrace type fens (Type II). Shallow ground water was collected just prior to surface interception (source water), and again after discharging into each fen (fen water) and measured for a suite of cations (Ca2+, Mg2+, K+, Na+) and anions (HCO3- SO42-, NO3-, NO2-, PO43-, and Cl-). Fen water hydroperiods showed similar dynamics, despite some variation in the hydrologic input of these systems (source water). Central Indiana fens are recognized as Ca2+, Mg2+, and HCO3- dominated systems. Fen water showed substantial evolution from source water at each study site, evidently the result of carbonate and gypsum dissolution dynamics. However, when only fen water is analyzed, results suggest that ground water of the southern fens represents geochemical similarity, with the exception of anthropogenic influence. The greatest geochemical variation among central Indiana fens can be attributed to Na+ and Cl-, which has been linked to road salt contamination at two of the study sites. This hydrogeochemical study also reveals that fens (slope wetlands) within this particular geologic setting of central Indiana show strong geochemical similarities to fens located throughout the temperate Northern Hemisphere. However, statistical analyses provide evidence that the parameters of Ca2+, HCO3-, and SO42- account for the greatest variation among these wetland communities, suggesting that calcium carbonate and gypsum dissolution dynamics are primarily fen specific while other parameters remain relatively homogenous across a wide geographical range. Lenore P. Tedesco, Ph. D.Item Center for Earth and Environmental Science: A Program of Excellence in Water Resources Research(Office of the Vice Chancellor for Research, 2010-04-09) Tedesco, Lenore P.; Babbar-Sebens, MeghnaResearch and training into the impacts of environmental insults on water systems and the links between water resources and human health are critical needs nationally and internationally. IUPUI is in an excellent position to take on a leadership role in scholarship and teaching about water quality and health. CEES has built its program and reputation around excellence in water resources and ecosystem restoration research. Key to our success has been the development of a research network founded on strong corporate, governmental and community partnerships and collaborations. This framework is strengthened by the mutual benefit realized by all partners and helps to support IUPUI’s core value of community engagement as an urban research university. In order to maximize the efficient use of resources, CEES is pursuing four strategic objectives in a manner that will further the universities goals of pursuing excellence in 1) research, scholarship and creative activity, 2) teaching and learning, and 3) civic engagement while also enhancing the resource base of the university. The Center places the highest priority on four strategic initiatives: 1. The Center will engage in cutting-edge research and training for mixed agricultural and urban watersheds 2. Evaluate and assess watershed Best Management Practices targeting atrazine, nutrients and emerging contaminants and pathogens 3. Establish a K-12 technology based science education program in water, air and energy 4. Work with state agencies to identify watershed issues associated with Major Moves and other economic development initiatives, the standards to be applied and training needs To this end, the Signature Center program in CEES has focused on building new collaborations with water resources and human health risks. Signature Center funding has provided for new faculty member Dr. Meghna Babbar-Sebens to join the Earth Sciences faculty as an Assistant Professor. Her research is focused on the modeling of water-borne contaminants, and decision support systems for management of water quality and associated ecological and human health risks. Dr. Babbar-Sebens research focuses on a) analysis of uncertainty when models are used to conduct spatially referenced systems-scale environmental assessments, b) incorporation of uncertainty analysis within decision support systems used for risk assessment and management, and c) optimization of water resources planning and management strategies for emergency response and water-borne disease prevention.Item Cladistic Analysis of the Paleozoic Bryozoan Families Monticuliporidae and Mesotrypidae(2011-03-16) Adamczyk, Amber Diane; Pachut, Joseph F., 1950-; Tedesco, Lenore P.; Rosenberg, Gary D.Two closely related families of Ordovician bryozoans, the Monticuliporidae and the Mesotrypidae, collectively contain 12 genera that have been reclassified repeatedly by various authors. Using published illustrations for the type specimens of each genus, character states for 267 morphological attributes were coded. Cladistic results were compared between the programs PAST and PAUP, and contrasted with phenetic methods. PAUP produced the shortest trees, with better summary index values and low homoplasy. Phenetic results varied, depending largely on the similarity measures used. Cladistic analysis produced five tree topologies, the most parsimonious of which consisted of a monophyletic crown group, representing Family Monticuliporidae, and a paraphyletic stem group that included the genera Mesotrypa and Diazipora. The crown group includes the genera Aspidopora, Atactoporella, Acantholaminatus, Peronopora, Homotrypella, Homotrypa, Gortanipora, Monticulipora, Prasopora, and Prasoporina. The paraphyletic stem group matches Astrova’s concept of Family Mesotrypidae. These results suggest the placement of all 12 genera in a single Family Monticuliporidae. Future studies that include data for additional closely related genera in might provide a clearer picture of familial assignments for these, and other, stenolaemate genera.Item Combining Multivariate Statistical Methods and Spatial Analysis to Characterize Water Quality Conditions in the White River Basin, Indiana, U.S.A.(2011-02-25) Gamble, Andrew Stephan; Babbar-Sebens, Meghna; Tedesco, Lenore P.; Peng, HanxiangThis research performs a comparative study of techniques for combining spatial data and multivariate statistical methods for characterizing water quality conditions in a river basin. The study has been performed on the White River basin in central Indiana, and uses sixteen physical and chemical water quality parameters collected from 44 different monitoring sites, along with various spatial data related to land use – land cover, soil characteristics, terrain characteristics, eco-regions, etc. Various parameters related to the spatial data were analyzed using ArcHydro tools and were included in the multivariate analysis methods for the purpose of creating classification equations that relate spatial and spatio-temporal attributes of the watershed to water quality data at monitoring stations. The study compares the use of various statistical estimates (mean, geometric mean, trimmed mean, and median) of monitored water quality variables to represent annual and seasonal water quality conditions. The relationship between these estimates and the spatial data is then modeled via linear and non-linear multivariate methods. The linear statistical multivariate method uses a combination of principal component analysis, cluster analysis, and discriminant analysis, whereas the non-linear multivariate method uses a combination of Kohonen Self-Organizing Maps, Cluster Analysis, and Support Vector Machines. The final models were tested with recent and independent data collected from stations in the Eagle Creek watershed, within the White River basin. In 6 out of 20 models the Support Vector Machine more accurately classified the Eagle Creek stations, and in 2 out of 20 models the Linear Discriminant Analysis model achieved better results. Neither the linear or non-linear models had an apparent advantage for the remaining 12 models. This research provides an insight into the variability and uncertainty in the interpretation of the various statistical estimates and statistical models, when water quality monitoring data is combined with spatial data for characterizing general spatial and spatio-temporal trends.Item Comparison of Urban Tree Canopy Classification With High Resolution Satellite Imagery and Three Dimensional Data Derived From LIDAR and Stereoscopic Sensors(2008-08-22T13:59:51Z) Baller, Matthew Lee; Wilson, Jeffrey S. (Jeffrey Scott), 1967-; Tedesco, Lenore P.; Li, LinDespite growing recognition as a significant natural resource, methods for accurately estimating urban tree canopy cover extent and change over time are not well-established. This study evaluates new methods and data sources for mapping urban tree canopy cover, assessing the potential for increased accuracy by integrating high-resolution satellite imagery and 3D imagery derived from LIDAR and stereoscopic sensors. The results of urban tree canopy classifications derived from imagery, 3D data, and vegetation index data are compared across multiple urban land use types in the City of Indianapolis, Indiana. Results indicate that incorporation of 3D data and vegetation index data with high resolution satellite imagery does not significantly improve overall classification accuracy. Overall classification accuracies range from 88.34% to 89.66%, with resulting overall Kappa statistics ranging from 75.08% to 78.03%, respectively. Statistically significant differences in accuracy occurred only when high resolution satellite imagery was not included in the classification treatment and only the vegetation index data or 3D data were evaluated. Overall classification accuracy for these treatment methods were 78.33% for both treatments, with resulting overall Kappa statistics of 51.36% and 52.59%.Item CONFOUNDING CONSTITUENTS IN REMOTE SENSING OF PHYCOCYANIN(2008-08-22T13:53:38Z) Vallely, Lara Anne; Wilson, Jeffrey S. (Jeffrey Scott), 1967-; Tedesco, Lenore P.; Li, LinThis project examines the impact of confounding variables that have limited the accuracy of remotely predicting phycocyanin in three Indiana drinking and recreational water reservoirs. In-situ field reflectance spectra were collected from June to November 2006 over a wide range of algal bloom conditions using an ASD Fieldspec (UV/VNIR) spectroradiometer. Groundtruth samples were analyzed for chlorophyll a, phycocyanin, total suspended matter, and other water quality constituents. Previously published spectral algorithms for the detection of phycocyanin were evaluated against lab measured pigment concentrations using linear least squares regression. Algorithm performance varied across study sites (best performing models by reservoir resulted in r2 values of 0.32 to 0.84). Residuals of predicted versus measured pigment concentrations were analyzed against concentration of potential confounding water constituents. Residual analysis revealed optically active constituents contributed between 25% and 95% of original phycocyanin model errors. Inclusion of spectral variables into models to account for significant confounders resulted in improved spectral estimates of phycocyanin (r2 = 0.56 to 0.93).Item Exploring the Utility of High Resolution Imagery for Determining Wetland Signatures(2012-07-03) DeLury, Judith Ann; Wilson, Jeffrey S. (Jeffrey Scott), 1967-; Ottensmann, John R.; Tedesco, Lenore P.Wetland habitats are characterized by periodic inundation and saturation by water creating anaerobic conditions that generate hydric soils and support hydrophytic vegetation. Wetland habitats provide important ecological functions including breeding grounds for fish, other wildlife, water purification, reduction in flooding, species diversity, recreation, food production, aesthetic value, and transformation of nutrients (Tiner, 1999). The multiple benefits of wetlands make them an important resource to monitor. A literature review suggests a combination of geospatial variables and methods should be tested for appropriateness in wetland delineation within local settings. Advancements in geospatial data technology and ease of accessing new, higher resolution geospatial data make study at local levels easier and more feasible (Barrette et al, 2000). The purpose of the current study is to evaluate new sources of geospatial data as potential variables to improve wetland identification and delineation. High resolution multispectral digital imagery, topographic data, and soils information are used to derive and evaluate independent variables. Regression analysis was used to analyze the data.Item THE IMPACT OF STORM CHARACTERISTICS AND LAND USE ON NUTRIENT EXPORT IN TWO GLACIATED WATERSHEDS IN CENTRAL INDIANA, USA(2007-09-18T17:29:39Z) Wagner, Laura E.; Vidon, Philippe G.; Tedesco, Lenore P.; Licht, Kathy J.This study investigated nutrient export during three spring storm events in two different land use watersheds (agricultural and mixed land use) in a glacial till landscape of the Midwestern, USA. The objectives of the study were: (1) to determine how land use affects water, nitrate, soluble reactive phosphorus (SRP) and dissolved organic carbon (DOC) delivery (timing, amount) to streams during spring storms in two central Indiana watersheds with contrasting land use; and (2) to determine nitrate, SRP and DOC flow pathways to streams during spring storms. High frequency stream sampling of nutrients and cations, coupled with hydrograph separations using δ18O, was used to identify water flow pathways and event and pre-event water contributions to the streams. Data indicate land use and storm characteristics play a role in the export of water and nutrients. In the agricultural watershed (Watershed A), the storm hydrograph is dominated by pre-event water, whereas the mixed land use watershed (Watershed M) storm hydrograph is more event water dominated. Watershed A also contains higher nutrient concentrations, especially nitrate. High bulk precipitation and greater maximum intensity export more nitrate, SRP, and DOC to the streams. Results also indicate nitrate, DOC, and SRP concentrations display distinct temporal patterns during spring storm events. DOC concentration increased with stormflow and peaked on the rising limb/with maximum discharge regardless of land use or storm event. In Watershed A, SRP concentration followed a similar pattern to DOC during small storms; therefore they are believed to be exported together with flushing of saturated near-surface soil waters via macropores/overland flow. However, SRP likely has multiple flowpaths, one dominated over another depending on the storm. Nitrate concentrations matched Ca2+, Mg2+, and Na+ trajectories and decreased with stormflow, suggesting a tile drain/subsurface flowpath. Nitrate and SRP peak concentrations are delayed relative to DOC in Watershed M. The wet retention ponds in the headwaters are believed to delay the stormflow response, and therefore, the delivery of nutrients to the stream.Item THE INFLUENCE OF SEASON, FLOW REGIME, AND WATERSHED LAND USE AND LAND COVER ON NUTRIENT DELIVERY TO TWO RAPIDLY URBANIZING WATERSHEDS IN CENTRAL INDIANA, USA(2007-03-20T15:13:04Z) Casey, Leda René; Tedesco, Lenore P.; Vidon, Philippe G.; Wilson, Jeffrey S. (Jeffrey Scott), 1967-This study explores relationships between temperate stream geochemistry and watershed land cover in two temperate streams, Fishback Creek and School Branch Creek, located in a rapidly urbanizing area on the northwest side of Indianapolis in Eagle Creek Watershed, Indiana. The temporal and spatial patterns of NO3-N, PO4, DOC, SiO2, Cl-, and Na+ were assessed to understand the influence of land cover on the magnitude and timing of water, chemical, and nutrient delivery to streams. Results of the study indicate that the influences of different land cover types on water delivery to streams and in-stream water quality vary seasonally and with respect to flow regime, that urbanization may result in decreased nitrate input, and that phosphate and dissolved organic carbon concentrations will likely remain constant as the watershed is developed. Results also indicate that riparian buffer downstream of intense agriculture lands dilutes high agricultural NO3-N concentrations, but not enough to return in-stream concentrations to natural levels.
- «
- 1 (current)
- 2
- 3
- »