ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Taylor, William M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Muscle-Specific Ablation of Glucose Transporter 1 (GLUT1) Does Not Impair Basal or Overload-Stimulated Skeletal Muscle Glucose Uptake
    (MDPI, 2022-11-23) McMillin, Shawna L.; Evans, Parker L.; Taylor, William M.; Weyrauch, Luke A.; Sermersheim, Tyler J.; Welc, Steven S.; Heitmeier, Monique R.; Hresko, Richard C.; Hruz, Paul W.; Koumanov, Francois; Holman, Geoffrey D.; Abel, E. Dale; Witczak, Carol A.; Anatomy, Cell Biology and Physiology, School of Medicine
    Glucose transporter 1 (GLUT1) is believed to solely mediate basal (insulin-independent) glucose uptake in skeletal muscle; yet recent work has demonstrated that mechanical overload, a model of resistance exercise training, increases muscle GLUT1 levels. The primary objective of this study was to determine if GLUT1 is necessary for basal or overload-stimulated muscle glucose uptake. Muscle-specific GLUT1 knockout (mGLUT1KO) mice were generated and examined for changes in body weight, body composition, metabolism, systemic glucose regulation, muscle glucose transporters, and muscle [3H]-2-deoxyglucose uptake ± the GLUT1 inhibitor BAY-876. [3H]-hexose uptake ± BAY-876 was also examined in HEK293 cells-expressing GLUT1-6 or GLUT10. mGLUT1KO mice exhibited no impairments in body weight, lean mass, whole body metabolism, glucose tolerance, basal or overload-stimulated muscle glucose uptake. There was no compensation by the insulin-responsive GLUT4. In mGLUT1KO mouse muscles, overload stimulated higher expression of mechanosensitive GLUT6, but not GLUT3 or GLUT10. In control and mGLUT1KO mouse muscles, 0.05 µM BAY-876 impaired overload-stimulated, but not basal glucose uptake. In the GLUT-HEK293 cells, BAY-876 inhibited glucose uptake via GLUT1, GLUT3, GLUT4, GLUT6, and GLUT10. Collectively, these findings demonstrate that GLUT1 does not mediate basal muscle glucose uptake and suggest that a novel glucose transport mechanism mediates overload-stimulated glucose uptake.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University