- Browse by Author
Browsing by Author "Taylor, Terrie E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Adipose tissue parasite sequestration drives leptin production in mice and correlates with human cerebral malaria(American Association for the Advancement of Science, 2021-03-24) Mejia, Pedro; Treviño-Villarreal, J. Humberto; De Niz, Mariana; Meibalan, Elamaran; Longchamp, Alban; Reynolds, Justin S.; Turnbull, Lindsey B.; Opoka, Robert O.; Roussilhon, Christian; Spielmann, Tobias; Ozaki, C. Keith; Heussler, Volker T.; Seydel, Karl B.; Taylor, Terrie E.; John, Chandy C.; Milner, Danny A.; Marti, Matthias; Mitchell, James R.; Medicine, School of MedicineCirculating levels of the adipokine leptin are linked to neuropathology in experimental cerebral malaria (ECM), but its source and regulation mechanism remain unknown. Here, we show that sequestration of infected red blood cells (iRBCs) in white adipose tissue (WAT) microvasculature increased local vascular permeability and leptin production. Mice infected with parasite strains that fail to sequester in WAT displayed reduced leptin production and protection from ECM. WAT sequestration and leptin induction were lost in CD36KO mice; however, ECM susceptibility revealed sexual dimorphism. Adipocyte leptin was regulated by the mechanistic target of rapamycin complex 1 (mTORC1) and blocked by rapamycin. In humans, although Plasmodium falciparum infection did not increase circulating leptin levels, iRBC sequestration, tissue leptin production, and mTORC1 activity were positively correlated with CM in pediatric postmortem WAT. These data identify WAT sequestration as a trigger for leptin production with potential implications for pathogenesis of malaria infection, prognosis, and treatment.Item Admission EEG findings in diverse paediatric cerebral malaria populations predict outcomes(BMC, 2018-05-22) Postels, Douglas G.; Wu, Xiaoting; Li, Chenxi; Kaplan, Peter W.; Seydel, Karl B.; Taylor, Terrie E.; Kousa, Youssef A.; Idro, Richard; Opoka, Robert; John, Chandy C.; Birbeck, Gretchen L.; Medicine, School of MedicineElectroencephalography at hospital presentation may offer important insights regarding prognosis that can inform understanding of cerebral malaria (CM) pathophysiology and potentially guide patient selection and risk stratification for future clinical trials. Electroencephalogram (EEG) findings in children with CM in Uganda and Malawi were compared and associations between admission EEG findings and outcome across this diverse population were assessed. Demographic, clinical and admission EEG data from Ugandan and Malawian children admitted from 2009 to 2012 with CM were gathered, and survivors assessed for neurological abnormalities at discharge. RESULTS: 281 children were enrolled (Uganda n = 122, Malawi n = 159). The Malawian population was comprised only of retinopathy positive children (versus 72.5% retinopathy positive in Uganda) and were older (4.2 versus 3.7 years; p = 0.046), had a higher HIV prevalence (9.0 versus 2.8%; p = 0.042), and worse hyperlactataemia (7.4 versus 5.2 mmol/L; p < 0.001) on admission compared to the Ugandan children. EEG findings differed between the two groups in terms of average voltage and frequencies, reactivity, asymmetry, and the presence/absence of sleep architecture. In univariate analyses pooling EEG and outcomes data for both sites, higher average and maximum voltages, faster dominant frequencies, and retained reactivity were associated with survival (all p < 0.05). Focal slowing was associated with death (OR 2.93; 95% CI 1.77-7.30) and a lower average voltage was associated with neurological morbidity in survivors (p = 0.0032). CONCLUSIONS: Despite substantial demographic and clinical heterogeneity between subjects in Malawi and Uganda as well as different EEG readers at each site, EEG findings on admission predicted mortality and morbidity. For CM clinical trials aimed at decreasing mortality or morbidity, EEG may be valuable for risk stratification and/or subject selection.Item Central Nervous System Virus Infection in African Children with Cerebral Malaria(American Society of Tropical Medicine and Hygiene, 2020-07) Postels, Douglas G.; Osei-Tutu, Lawrence; Seydel, Karl B.; Xu, Qian; Li, Chenxi; Taylor, Terrie E.; John, Chandy C.; Mallewa, Macpherson; Solomon, Tom; Agbenyega, Tsiri; Ansong, Daniel; Opoka, Robert O.; Khan, Lillian M.; Ramachandran, Prashanth S.; Leon, Kristoffer E.; DeRisi, Joseph L.; Langelier, Charles; Wilson, Michael R.; Pediatrics, School of MedicineWe aimed to identify the contribution of central nervous system (CNS) viral coinfection to illness in African children with retinopathy-negative or retinopathy-positive cerebral malaria (CM). We collected cerebrospinal fluid (CSF) from 272 children with retinopathy-negative or retinopathy-positive CM and selected CSF from 111 of these children (38 retinopathy positive, 71 retinopathy negative, 2 retinopathy unknown) for analysis by metagenomic next-generation sequencing. We found CSF viral coinfections in 7/38 (18.4%) retinopathy-positive children and in 18/71 (25.4%) retinopathy-negative children. Excluding HIV-1, human herpesviruses (HHV) represented 61% of viruses identified. Excluding HIV-1, CNS viral coinfection was equally likely in children who were retinopathy positive and retinopathy negative (P = 0.1431). Neither mortality nor neurological morbidity was associated with the presence of virus (odds ratio [OR] = 0.276, 95% CI: 0.056-1.363). Retinopathy-negative children with a higher temperature, lower white blood cell count, or being dehydrated were more likely to have viral coinfection. Level of consciousness at admission was not associated with CNS viral coinfection in retinopathy-negative children. Viral CNS coinfection is unlikely to contribute to coma in children with CM. The herpesviruses other than herpes simplex virus may represent incidental bystanders in CM, reactivating during acute malaria infection.