- Browse by Author
Browsing by Author "Tarutani, Airi"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Age-dependent formation of TMEM106B amyloid filaments in human brains(Springer Nature, 2022) Schweighauser, Manuel; Arseni, Diana; Bacioglu, Mehtap; Huang, Melissa; Lövestam, Sofia; Shi, Yang; Yang, Yang; Zhang, Wenjuan; Kotecha, Abhay; Garringer, Holly J.; Vidal, Ruben; Hallinan, Grace I.; Newell, Kathy L.; Tarutani, Airi; Murayama, Shigeo; Miyazaki, Masayuki; Saito, Yuko; Yoshida, Mari; Hasegawa, Kazuko; Lashley, Tammaryn; Revesz, Tamas; Kovacs, Gabor G.; van Swieten, John; Takao, Masaki; Hasegawa, Masato; Ghetti, Bernardino; Spillantini, Maria Grazia; Ryskeldi-Falcon, Benjamin; Murzin, Alexey G.; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineMany age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-β, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-β amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.Item Novel tau filament fold in corticobasal degeneration(Nature Publishing group, 2020-02-12) Zhang, Wenjuan; Tarutani, Airi; Newell, Kathy L.; Murzin, Alexey G.; Matsubara, Tomoyasu; Falcon, Benjamin; Vidal, Ruben; Garringer, Holly J.; Shi, Yang; Ikeuchi, Takeshi; Murayama, Shigeo; Ghetti, Bernardino; Hasegawa, Masato; Goedert, Michel; Scheres, Sjors H. W.; Pathology and Laboratory Medicine, School of MedicineCorticobasal degeneration (CBD) is a neurodegenerative tauopathy that is characterised by motor and cognitive disturbances (1–3). A higher frequency of the H1 haplotype of MAPT, the tau gene, is present in cases of CBD than in controls (4,5) and genome-wide association studies have identified additional risk factors (6). By histology, astrocytic plaques are diagnostic of CBD (7,8), as are detergent-insoluble tau fragments of 37 kDa by SDS-PAGE (9). Like progressive supranuclear palsy (PSP), globular glial tauopathy (GGT) and argyrophilic grain disease (AGD) (10), CBD is characterised by abundant filamentous tau inclusions that are made of isoforms with four microtubule-binding repeats (4R) (11–15). This distinguishes 4R tauopathies from Pick’s disease, filaments of which are made of three-repeat (3R) tau isoforms, and from Alzheimer’s disease and chronic traumatic encephalopathy (CTE), where both 3R and 4R tau isoforms are found in the filaments (16). Here we report the structures of tau filaments extracted from the brains of three individuals with CBD using electron cryo-microscopy (cryo-EM). They were identical between cases, but distinct from those of Alzheimer’s disease, Pick’s disease and CTE (17–19). The core of CBD filaments comprises residues K274-E380 of tau, spanning the last residue of R1, the whole of R2, R3 and R4, as well as 12 amino acids after R4. It adopts a novel four-layered fold, which encloses a large non-proteinaceous density. The latter is surrounded by the side chains of lysine residues 290 and 294 from R2 and 370 from the sequence after R4. CBD is the first 4R tauopathy with filaments of known structure.Item Structure-based Classification of Tauopathies(Springer Nature, 2021) Shi, Yang; Zhang, Wenjuan; Yang, Yang; Murzin, Alexey G.; Falcon, Benjamin; Kotecha, Abhay; van Beers, Mike; Tarutani, Airi; Kametani, Fuyuki; Garringer, Holly J.; Vidal, Ruben; Hallinan, Grace I.; Lashley, Tammaryn; Saito, Yuko; Murayama, Shigeo; Yoshida, Mari; Tanaka, Hidetomo; Kakita, Akiyoshi; Ikeuchi, Takeshi; Robinson, Andrew C.; Mann, David M.A.; Kovacs, Gabor G.; Revesz, Tamas; Ghetti, Bernardino; Hasegawa, Masato; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineThe ordered assembly of tau protein into filaments characterizes several neurodegenerative diseases, which are called tauopathies. It was previously reported that, by cryo-electron microscopy, the structures of tau filaments from Alzheimer's disease1,2, Pick's disease3, chronic traumatic encephalopathy4 and corticobasal degeneration5 are distinct. Here we show that the structures of tau filaments from progressive supranuclear palsy (PSP) define a new three-layered fold. Moreover, the structures of tau filaments from globular glial tauopathy are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs, instead resembling the four-layered fold of corticobasal degeneration. The AGD fold is also observed in ageing-related tau astrogliopathy. Tau protofilament structures from inherited cases of mutations at positions +3 or +16 in intron 10 of MAPT (the microtubule-associated protein tau gene) are also identical to those from AGD, suggesting that relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, the structures of tau filaments from cases of familial British dementia and familial Danish dementia are the same as those from cases of Alzheimer's disease and primary age-related tauopathy. These findings suggest a hierarchical classification of tauopathies on the basis of their filament folds, which complements clinical diagnosis and neuropathology and also allows the identification of new entities-as we show for a case diagnosed as PSP, but with filament structures that are intermediate between those of globular glial tauopathy and PSP.Item Structures of α-Synuclein Filaments from Multiple System Atrophy(Springer Nature, 2020-09) Schweighauser, Manuel; Shi, Yang; Tarutani, Airi; Kametani, Fuyuki; Murzin, Alexey G.; Ghetti, Bernardino; Matsubara, Tomoyasu; Tomita, Taisuke; Ando, Takashi; Hasegawa, Kazuko; Murayama, Shigeo; Yoshida, Mari; Hasegawa, Masato; Scheres, Sjors H.W.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineSynucleinopathies, which include multiple system atrophy (MSA), Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies (DLB), are human neurodegenerative diseases1. Existing treatments are at best symptomatic. These diseases are characterized by the presence of, and believed to be caused by the formation of, filamentous inclusions of α-synuclein in brain cells2,3. However, the structures of α-synuclein filaments from the human brain are unknown. Here, using cryo-electron microscopy, we show that α-synuclein inclusions from the brains of individuals with MSA are made of two types of filament, each of which consists of two different protofilaments. In each type of filament, non-proteinaceous molecules are present at the interface of the two protofilaments. Using two-dimensional class averaging, we show that α-synuclein filaments from the brains of individuals with MSA differ from those of individuals with DLB, which suggests that distinct conformers or strains characterize specific synucleinopathies. As is the case with tau assemblies4-9, the structures of α-synuclein filaments extracted from the brains of individuals with MSA differ from those formed in vitro using recombinant proteins, which has implications for understanding the mechanisms of aggregate propagation and neurodegeneration in the human brain. These findings have diagnostic and potential therapeutic relevance, especially because of the unmet clinical need to be able to image filamentous α-synuclein inclusions in the human brain.