- Browse by Author
Browsing by Author "Tanner, George A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Functional studies of the kidney of living animals using multicolor 2-photon microscopy(2002-09) Dunn, Kenneth W.; Sandoval, Ruben M.; Kelly, Katherine J.; Dagher, Pierre C.; Tanner, George A.; Atkinson, Simon J.; Bacallao, Robert L.; Molitoris, Bruce A.Optical microscopy, when applied to living animals, provides a powerful means of studying cell biology in the most physiologically relevant setting. The ability of two-photon microscopy to collect optical sections deep into biological tissues has opened up the field of intravital microscopy to high-resolution studies of the brain, lens, skin, and tumors. Here we present examples of the way in which two-photon microscopy can be applied to intravital studies of kidney physiology. Because the kidney is easily externalized without compromising its function, microscopy can be used to evaluate various aspects of renal function in vivo. These include cell vitality and apoptosis, fluid transport, receptor-mediated endocytosis, blood flow, and leukocyte trafficking. Efficient two-photon excitation of multiple fluorophores permits comparison of multiple probes and simultaneous characterization of multiple parameters and yields spectral information that is crucial to the interpretation of images containing uncharacterized autofluorescence. The studies described here demonstrate the way in which two-photon microscopy can provide a level of resolution previously unattainable in intravital microscopy, enabling kinetic analyses and physiological studies of the organs of living animals with subcellular resolution.Item Protective vascular coagulation in response to bacterial infection of the kidney is regulated by bacterial lipid A and host CD147(Oxford, 2018-11-26) Schulz, Anette; Chuquimia, Olga D.; Antypas, Haris; Steiner, Svava E.; Sandoval, Ruben M.; Tanner, George A.; Molitoris, Bruce A.; Richter-Dahlfors, Agneta; Melican, Keira; Medicine, School of MedicineBacterial infection of the kidney leads to a rapid cascade of host protective responses, many of which are still poorly understood. We have previously shown that following kidney infection with uropathogenicEscherichia coli (UPEC), vascular coagulation is quickly initiated in local perivascular capillaries that protects the host from progressing from a local infection to systemic sepsis. The signaling mechanisms behind this response have not however been described. In this study, we use a number ofin vitro andin vivo techniques, including intravital microscopy, to identify two previously unrecognized components influencing this protective coagulation response. The acylation state of the Lipid A of UPEC lipopolysaccharide (LPS) is shown to alter the kinetics of local coagulation onsetin vivo. We also identify epithelial CD147 as a potential host factor influencing infection-mediated coagulation. CD147 is expressed by renal proximal epithelial cells infected with UPEC, contingent to bacterial expression of the α-hemolysin toxin. The epithelial CD147 subsequently can activate tissue factor on endothelial cells, a primary step in the coagulation cascade. This study emphasizes the rapid, multifaceted response of the kidney tissue to bacterial infection and the interplay between host and pathogen during the early hours of renal infection.