- Browse by Author
Browsing by Author "Tanner, Caroline M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Assessment of heterogeneity among participants in the Parkinson's Progression Markers Initiative cohort using α-synuclein seed amplification: a cross-sectional study(Elsevier, 2023) Siderowf, Andrew; Concha-Marambio, Luis; Lafontant, David-Erick; Farris, Carly M.; Ma, Yihua; Urenia, Paula A.; Nguyen, Hieu; Alcalay, Roy N.; Chahine, Lana M.; Foroud, Tatiana; Galasko, Douglas; Kieburtz, Karl; Merchant, Kalpana; Mollenhauer, Brit; Poston, Kathleen L.; Seibyl, John; Simuni, Tanya; Tanner, Caroline M.; Weintraub, Daniel; Videnovic, Aleksandar; Choi, Seung Ho; Kurth, Ryan; Caspell-Garcia, Chelsea; Coffey, Christopher S.; Frasier, Mark; Oliveira, Luis M. A.; Hutten, Samantha J.; Sherer, Todd; Marek, Kenneth; Soto, Claudio; Parkinson's Progression Markers Initiative; Medical and Molecular Genetics, School of MedicineBackground: Emerging evidence shows that α-synuclein seed amplification assays (SAAs) have the potential to differentiate people with Parkinson's disease from healthy controls. We used the well characterised, multicentre Parkinson's Progression Markers Initiative (PPMI) cohort to further assess the diagnostic performance of the α-synuclein SAA and to examine whether the assay identifies heterogeneity among patients and enables the early identification of at-risk groups. Methods: This cross-sectional analysis is based on assessments done at enrolment for PPMI participants (including people with sporadic Parkinson's disease from LRRK2 and GBA variants, healthy controls, prodromal individuals with either rapid eye movement sleep behaviour disorder (RBD) or hyposmia, and non-manifesting carriers of LRRK2 and GBA variants) from 33 participating academic neurology outpatient practices worldwide (in Austria, Canada, France, Germany, Greece, Israel, Italy, the Netherlands, Norway, Spain, the UK, and the USA). α-synuclein SAA analysis of CSF was performed using previously described methods. We assessed the sensitivity and specificity of the α-synuclein SAA in participants with Parkinson's disease and healthy controls, including subgroups based on genetic and clinical features. We established the frequency of positive α-synuclein SAA results in prodromal participants (RBD and hyposmia) and non-manifesting carriers of genetic variants associated with Parkinson's disease, and compared α-synuclein SAA to clinical measures and other biomarkers. We used odds ratio estimates with 95% CIs to measure the association between α-synuclein SAA status and categorical measures, and two-sample 95% CIs from the resampling method to assess differences in medians between α-synuclein SAA positive and negative participants for continuous measures. A linear regression model was used to control for potential confounders such as age and sex. Findings: This analysis included 1123 participants who were enrolled between July 7, 2010, and July 4, 2019. Of these, 545 had Parkinson's disease, 163 were healthy controls, 54 were participants with scans without evidence of dopaminergic deficit, 51 were prodromal participants, and 310 were non-manifesting carriers. Sensitivity for Parkinson's disease was 87·7% (95% CI 84·9-90·5), and specificity for healthy controls was 96·3% (93·4-99·2). The sensitivity of the α-synuclein SAA in sporadic Parkinson's disease with the typical olfactory deficit was 98·6% (96·4-99·4). The proportion of positive α-synuclein SAA was lower than this figure in subgroups including LRRK2 Parkinson's disease (67·5% [59·2-75·8]) and participants with sporadic Parkinson's disease without olfactory deficit (78·3% [69·8-86·7]). Participants with LRRK2 variant and normal olfaction had an even lower α-synuclein SAA positivity rate (34·7% [21·4-48·0]). Among prodromal and at-risk groups, 44 (86%) of 51 of participants with RBD or hyposmia had positive α-synuclein SAA (16 of 18 with hyposmia, and 28 of 33 with RBD). 25 (8%) of 310 non-manifesting carriers (14 of 159 [9%] LRRK2 and 11 of 151 [7%] GBA) were positive. Interpretation: This study represents the largest analysis so far of the α-synuclein SAA for the biochemical diagnosis of Parkinson's disease. Our results show that the assay classifies people with Parkinson's disease with high sensitivity and specificity, provides information about molecular heterogeneity, and detects prodromal individuals before diagnosis. These findings suggest a crucial role for the α-synuclein SAA in therapeutic development, both to identify pathologically defined subgroups of people with Parkinson's disease and to establish biomarker-defined at-risk cohorts.Item Longitudinal Analysis of Multiple Neurotransmitter Metabolites in Cerebrospinal Fluid in Early Parkinson's Disease(Wiley, 2021-08) Kremer, Thomas; Taylor, Kirsten I.; Siebourg-Polster, Juliane; Gerken, Thomas; Staempfli, Andreas; Czech, Christian; Dukart, Juergen; Galasko, Douglas; Foroud, Tatiana; Chahine, Lana M.; Coffey, Christopher S.; Simuni, Tanya; Weintraub, Daniel; Seibyl, John; Poston, Kathleen L.; Toga, Arthur W.; Tanner, Caroline M.; Marek, Kenneth; Hutten, Samantha J.; Dziadek, Sebastian; Trenkwalder, Claudia; Pagano, Gennaro; Mollenhauer, Brit; Medical and Molecular Genetics, School of MedicineBackground: Cerebrospinal fluid (CSF) levels of monoamine metabolites may represent biomarkers of Parkinson's disease (PD). Objective: The aim of this study was quantification of multiple metabolites in CSF from PD versus healthy control subjects (HCs), including longitudinal analysis. Methods: Absolute levels of multiple monoamine metabolites in CSF were quantified by liquid chromatography coupled with tandem mass spectrometry from 161 individuals with early PD and 115 HCs from the Parkinson's Progression Marker Initiative and de novo PD (DeNoPA) studies. Results: Baseline levels of homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were lower in individuals with PD compared with HCs. HVA levels correlated with Movement Disorder Society Unified Parkinson's Disease Rating Scale total scores (P < 0.01). Both HVA/dopamine and DOPAC/dopamine levels correlated with caudate nucleus and raw DOPAC with putamen dopamine transporter single-photon emission computed tomography uptake ratios (P < 0.01). No metabolite changed over 2 years in drug-naive individuals, but some changed on starting levodopa treatment. Conclusions: HVA and DOPAC CSF levels mirrored nigrostriatal pathway damage, confirming the central role of dopaminergic degeneration in early PD.Item Parkinson's Progression Markers Initiative: A Milestone-Based Strategy to Monitor Parkinson's Disease Progression(IOS Press, 2023) Brumm, Michael C.; Siderowf, Andrew; Simuni, Tanya; Burghardt, Elliot; Choi, Seung Ho; Caspell-Garcia, Chelsea; Chahine, Lana M.; Mollenhauer, Brit; Foroud, Tatiana; Galasko, Douglas; Merchant, Kalpana; Arnedo, Vanessa; Hutten, Samantha J.; O’Grady, Alyssa N.; Poston, Kathleen L.; Tanner, Caroline M.; Weintraub, Daniel; Kieburtz, Karl; Marek, Kenneth; Coffey, Christopher S.; Parkinson’s Progression Markers Initiative; Medical and Molecular Genetics, School of MedicineBackground: Identifying a meaningful progression metric for Parkinson's disease (PD) that reflects heterogeneity remains a challenge. Objective: To assess the frequency and baseline predictors of progression to clinically relevant motor and non-motor PD milestones. Methods: Using data from the Parkinson's Progression Markers Initiative (PPMI) de novo PD cohort, we monitored 25 milestones across six domains ("walking and balance"; "motor complications"; "cognition"; "autonomic dysfunction"; "functional dependence"; "activities of daily living"). Milestones were intended to be severe enough to reflect meaningful disability. We assessed the proportion of participants reaching any milestone; evaluated which occurred most frequently; and conducted a time-to-first-event analysis exploring whether baseline characteristics were associated with progression. Results: Half of participants reached at least one milestone within five years. Milestones within the cognitive, functional dependence, and autonomic dysfunction domains were reached most often. Among participants who reached a milestone at an annual follow-up visit and remained active in the study, 82% continued to meet criteria for any milestone at one or more subsequent annual visits and 55% did so at the next annual visit. In multivariable analysis, baseline features predicting faster time to reaching a milestone included age (p < 0.0001), greater MDS-UPDRS total scores (p < 0.0001), higher GDS-15 depression scores (p = 0.0341), lower dopamine transporter binding (p = 0.0043), and lower CSF total α-synuclein levels (p = 0.0030). Symptomatic treatment was not significantly associated with reaching a milestone (p = 0.1639). Conclusion: Clinically relevant milestones occur frequently, even in early PD. Milestones were significantly associated with baseline clinical and biological markers, but not with symptomatic treatment. Further studies are necessary to validate these results, further assess the stability of milestones, and explore translating them into an outcome measure suitable for observational and therapeutic studies.Item Study in Parkinson's disease of exercise phase 3 (SPARX3): study protocol for a randomized controlled trial(BMC, 2022-10-06) Patterson, Charity G.; Joslin, Elizabeth; Gil, Alexandra B.; Spigle, Wendy; Nemet, Todd; Chahine, Lana; Christiansen, Cory L.; Melanson, Ed; Kohrt, Wendy M.; Mancini, Martina; Josbeno, Deborah; Balfany, Katherine; Griffith, Garett; Dunlap, Mac Kenzie; Lamotte, Guillaume; Suttman, Erin; Larson, Danielle; Branson, Chantale; McKee, Kathleen E.; Goelz, Li; Poon, Cynthia; Tilley, Barbara; Kang, Un Jung; Tansey, Malú Gámez; Luthra, Nijee; Tanner, Caroline M.; Haus, Jacob M.; Fantuzzi, Giamila; McFarland, Nikolaus R.; Gonzalez-Latapi, Paulina; Foroud, Tatiana; Motl, Robert; Schwarzschild, Michael A.; Simuni, Tanya; Marek, Kenneth; Naito, Anna; Lungu, Codrin; Corcos, Daniel M.; SPARX3-PSG Investigators; Medical and Molecular Genetics, School of MedicineBackground: To date, no medication has slowed the progression of Parkinson's disease (PD). Preclinical, epidemiological, and experimental data on humans all support many benefits of endurance exercise among persons with PD. The key question is whether there is a definitive additional benefit of exercising at high intensity, in terms of slowing disease progression, beyond the well-documented benefit of endurance training on a treadmill for fitness, gait, and functional mobility. This study will determine the efficacy of high-intensity endurance exercise as first-line therapy for persons diagnosed with PD within 3 years, and untreated with symptomatic therapy at baseline. Methods: This is a multicenter, randomized, evaluator-blinded study of endurance exercise training. The exercise intervention will be delivered by treadmill at 2 doses over 18 months: moderate intensity (4 days/week for 30 min per session at 60-65% maximum heart rate) and high intensity (4 days/week for 30 min per session at 80-85% maximum heart rate). We will randomize 370 participants and follow them at multiple time points for 24 months. The primary outcome is the Movement Disorders Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score (Part III) with the primary analysis assessing the change in MDS-UPDRS motor score (Part III) over 12 months, or until initiation of symptomatic antiparkinsonian treatment if before 12 months. Secondary outcomes are striatal dopamine transporter binding, 6-min walk distance, number of daily steps, cognitive function, physical fitness, quality of life, time to initiate dopaminergic medication, circulating levels of C-reactive protein (CRP), and brain-derived neurotrophic factor (BDNF). Tertiary outcomes are walking stride length and turning velocity. Discussion: SPARX3 is a Phase 3 clinical trial designed to determine the efficacy of high-intensity, endurance treadmill exercise to slow the progression of PD as measured by the MDS-UPDRS motor score. Establishing whether high-intensity endurance treadmill exercise can slow the progression of PD would mark a significant breakthrough in treating PD. It would have a meaningful impact on the quality of life of people with PD, their caregivers and public health.Item Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson’s Disease Progression(Wiley, 2020-11) Mollenhauer, Brit; Dakna, Mohammed; Kruse, Niels; Galasko, Douglas; Foroud, Tatiana; Zetterberg, Henrik; Schade, Sebastian; Gera, Roland G.; Wang, Wenting; Gao, Feng; Frasier, Mark; Chahine, Lana M.; Coffey, Christopher S.; Singleton, Andrew B.; Simuni, Tanya; Weintraub, Daniel; Seibyl, John; Toga, Arthur W.; Tanner, Caroline M.; Kieburtz, Karl; Marek, Kenneth; Siderowf, Andrew; Cedarbaum, Jesse M.; Hutten, Samantha J.; Trenkwalder, Claudia; Graham, Danielle; Medical and Molecular Genetics, School of MedicineBackground: The objective of this study was to assess neurofilament light chain as a Parkinson's disease biomarker. Methods: We quantified neurofilament light chain in 2 independent cohorts: (1) longitudinal cerebrospinal fluid samples from the longitudinal de novo Parkinson's disease cohort and (2) a large longitudinal cohort with serum samples from Parkinson's disease, other cognate/neurodegenerative disorders, healthy controls, prodromal conditions, and mutation carriers. Results: In the Parkinson's Progression Marker Initiative cohort, mean baseline serum neurofilament light chain was higher in Parkinson's disease patients (13 ± 7.2 pg/mL) than in controls (12 ± 6.7 pg/mL), P = 0.0336. Serum neurofilament light chain increased longitudinally in Parkinson's disease patients versus controls (P < 0.01). Motor scores were positively associated with neurofilament light chain, whereas some cognitive scores showed a negative association. Conclusions: Neurofilament light chain in serum samples is increased in Parkinson's disease patients versus healthy controls, increases over time and with age, and correlates with clinical measures of Parkinson's disease severity. Although the specificity of neurofilament light chain for Parkinson's disease is low, it is the first blood-based biomarker candidate that could support disease stratification of Parkinson's disease versus other cognate/neurodegenerative disorders, track clinical progression, and possibly assess responsiveness to neuroprotective treatments. However, use of neurofilament light chain as a biomarker of response to neuroprotective interventions remains to be assessed.