- Browse by Author
Browsing by Author "Tan, Patrick"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Chaos and Robustness in a Single Family of Genetic Oscillatory Networks(2014-03) Fu, Daniel; Tan, Patrick; Kuznetsov, Alexey; Molkov, Yaroslav IGenetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback.Item Orexinergic Neurotransmission in Temperature Responses to Amphetamines(Office of the Vice Chancellor for Research, 2014-04-11) Behrouzvaziri, Abolhassan; Fu, Daniel; Tan, Patrick; Zaretskaia, Maria; Rusyniak, Daniel; Zaretsky, Dmitry; Molkov, YaroslavDerivatives of amphetamines are widely abused all over the world. After long-term use cognitive, neurophysiological, and neuroanatomical deficits have been reported. Neurophysiological deficits are enhanced by hyperthermia, which itself is major mortality factor in drug abusers. Temperature responses to injections of methamphetamine are multiphasic and include both hypothermic and hyperthermic phases, which are highly dependent on ambient temperature and previous exposure to the drug. Also, amphetamine derivatives differentially affect various neuromediator systems, such as dopaminergic, noradrenergic and serotonergic. Temperature responses to methamphetamine (Meth) at room temperature have non-trivial dose-dependence, which is far from being understood. Intermediate doses of Meth cause less hyperthermia than both low and high doses of the drug. Also, maxima of all responses have different latency responses to low and high doses are virtually immediate, while a response to an intermediate dose appears to be delayed. In our previous modeling study we demonstrated that such dose-dependence could be explained by interaction of inhibitory and excitatory drives induced by Meth [1]. Recently, we have published data on the involvement of orexinergic neurotransmission in Meth-induced temperature responses [2] where the low dose (10 mg/kg, i.p.) of SB-334867 (SB), an antagonist of the first type of orexin receptors (ORX1), was injected 30 min prior to various doses of Meth. While this dose of antagonist clearly suppressed the response to low (1 mg/kg) and intermediate (5 mg/kg) doses of Meth, the effect was statistically significant only at the late phase (t > 60 min) of the response to intermediate dose. At the early phase (t < 60 min) any drug-related changes were marred by stress-induced temperature fluctuations resulting from two intraperitoneal injections. In a separate set of experiments a high dose of the same antagonist (30 mg/kg, i.p.) suppressed the effect of low doses of Meth even more, but in contrast, it significantly amplified the responses to the higher doses (5 and 10 mg/kg) of Meth. Understanding the mechanism that differentially affect excitatory and inhibitory components of temperature responses can have profound importance for explaining cases of life-threatening hyperthermia after Meth administration. Therefore, we performed a mathematical modeling study to provide mechanistic interpretation of SB action. Our previous model [1] was created to describe Meth-sensitive compartments and dynamics of the neural populations defining temperature responses for various doses of Meth. We hypothesized that a specific distribution of orexin receptors over the structures involved in the neural control of temperature is responsible for the complex dependence of the Meth-induced responses on the dose of orexin antagonist. To test this hypothesis we extended the model by incorporating ORX receptors that mediated Meth- and stress-dependent inputs. We showed that the low dose of antagonist almost fully suppresses the responses to both stress and intermediate doses of Meth by disruption of the corresponding inputs to the control structures. This allows hypothesizing that the excitatory component in temperature response to both stress and low dose of Meth is mediated by ORX1 receptors. Amplification of the response to the high dose of Meth at high dose of the antagonist points out to the involvement of a mechanism different from ORX1 receptor blockade. We speculate that at high doses SB becomes non-specific to ORX1 receptors and starts affecting ORX2 receptors. Further, ORX2 activation disinhibits the structure activated by high doses of Meth, which underlies the exaggerated responses to high doses of Meth at the presence of a high dose of SB. We conclude that both excitatory and inhibitory components in temperature responses to Meth administration and stress are mediated by orexinergic pathways. Non-specificity of SB at high doses to ORX1 receptors manifests itself in additional suppression of inhibition resulting in facilitation of the responses to high-doses of Meth.Item Orexinergic Neurotransmission in Temperature Responses to Methamphetamine and Stress: Mathematical Modeling as a Data Assimilation Approach(PLoS, 2015-05-20) Behrouzvaziri, Abolhassan; Fu, Daniel; Tan, Patrick; Yoo, Yeonjoo; Zaretskaia, Maria V.; Rusyniak, Daniel E.; Molkov, Yaroslav I.; Zaretsky, Dmitry V.; Department of Emergency Medicine, IU School of MedicineExperimental Data Orexinergic neurotransmission is involved in mediating temperature responses to methamphetamine (Meth). In experiments in rats, SB-334867 (SB), an antagonist of orexin receptors (OX1R), at a dose of 10 mg/kg decreases late temperature responses (t>60 min) to an intermediate dose of Meth (5 mg/kg). A higher dose of SB (30 mg/kg) attenuates temperature responses to low dose (1 mg/kg) of Meth and to stress. In contrast, it significantly exaggerates early responses (t<60 min) to intermediate and high doses (5 and 10 mg/kg) of Meth. As pretreatment with SB also inhibits temperature response to the stress of injection, traditional statistical analysis of temperature responses is difficult. Mathematical Modeling We have developed a mathematical model that explains the complexity of temperature responses to Meth as the interplay between excitatory and inhibitory nodes. We have extended the developed model to include the stress of manipulations and the effects of SB. Stress is synergistic with Meth on the action on excitatory node. Orexin receptors mediate an activation of on both excitatory and inhibitory nodes by low doses of Meth, but not on the node activated by high doses (HD). Exaggeration of early responses to high doses of Meth involves disinhibition: low dose of SB decreases tonic inhibition of HD and lowers the activation threshold, while the higher dose suppresses the inhibitory component. Using a modeling approach to data assimilation appears efficient in separating individual components of complex response with statistical analysis unachievable by traditional data processing methods.Item STAT5 programs a distinct subset of GM-CSF-producing T helper cells that is essential for autoimmune neuroinflammation(Nature Publishing Group, 2014-12) Sheng, Wanqiang; Yang, Fan; Zhou, Yi; Yang, Henry; Low, Pey Yng; Kemeny, David Michael; Tan, Patrick; Moh, Akira; Kaplan, Mark H.; Zhang, Yongliang; Fu, Xin-Yuan; Department of Pediatrics, IU School of MedicineT helper (TH)-cell subsets, such as TH1 and TH17, mediate inflammation in both peripheral tissues and central nervous system. Here we show that STAT5 is required for T helper-cell pathogenicity in autoimmune neuroinflammation but not in experimental colitis. Although STAT5 promotes regulatory T cell generation and immune suppression, loss of STAT5 in CD4+ T cells resulted in diminished development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Our results showed that loss of encephalitogenic activity of STAT5-deficient autoreactive CD4+ T cells was independent of IFN-γ or interleukin 17 (IL-17) production, but was due to the impaired expression of granulocyte-macrophage colony-stimulating factor (GM-CSF), a crucial mediator of T-cell pathogenicity. We further showed that IL-7-activated STAT5 promotes the generation of GM-CSF-producing CD4+ T cells, which were preferentially able to induce more severe EAE than TH17 or TH1 cells. Consistent with GM-CSF-producing cells being a distinct subset of TH cells, the differentiation program of these cells was distinct from that of TH17 or TH1 cells. We further found that IL-3 was secreted in a similar pattern as GM-CSF in this subset of TH cells. In conclusion, the IL-7-STAT5 axis promotes the generation of GM-CSF/IL-3-producing TH cells. These cells display a distinct transcriptional profile and may represent a novel subset of T helper cells which we designate as TH-GM.