- Browse by Author
Browsing by Author "Tan, Mengqun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adeno-associated Virus 2-Mediated Transduction and Erythroid Lineage-Restricted Long-Term Expression of the Human β-Globin Gene in Hematopoietic Cells from Homozygous β-Thalassemic Mice(Elsevier, 2001-06) Tan, Mengqun; Qing, Keyun; Zhou, Shangzhen; Yoder, Mervin C.; Srivastava, Arun; Microbiology and Immunology, School of MedicineAdeno-associated virus 2 (AAV), a nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. Here, we report successful AAV-mediated stable transduction and high-efficiency, long-term, erythroid lineage-restricted expression of a human β-globin gene in primary murine hematopoietic stem cells in vivo. Bone marrow-derived primitive Sca-1+, lin− hematopoietic stem cells from homozygous β-thalassemic mice were transduced ex vivo with a recombinant AAV vector containing a normal human β-globin gene followed by transplantation into low-dose-irradiated B6.c-kitW41/41 anemic recipient mice. Six months posttransplantation, tail-vein blood samples were analyzed by PCR amplification to document the presence of the transduced human β-globin gene sequences in the peripheral blood cells. Semiquantitative PCR analyses revealed that the transduced human β-globin gene sequences were present at ∼1 copy per cell. The efficiency of the human β-globin gene expression was determined to be up to 35% compared with the murine endogenous β-globin gene by semiquantitative RT-PCR analyses. Peripheral blood samples from several positive recipient mice obtained 10 months posttransplantation were fractionated to obtain enriched populations of granulocytes, lymphocytes, and erythroid cells. PCR analyses revealed the presence of the human β-globin gene sequences in granulocytes and lymphocytes, indicating multilineage reconstitution. However, only the erythroid population was positive following RT-PCR analyses, suggesting lineage-restricted expression of the transduced human β-globin gene. Southern blot analyses of total genomic DNA samples isolated from bone marrow cells from transplanted mice also documented proviral integration. These results provide further support for the potential use of recombinant AAV vectors in gene therapy of β-thalassemia and sickle-cell disease.Item High-Efficiency Transduction of Primary Human Hematopoietic Stem/Progenitor Cells by AAV6 Vectors: Strategies for Overcoming Donor-Variation and Implications in Genome Editing.(Nature, 2016) Ling, Chen; Bhukhai, Kanit; Yin, Zifei; Tan, Mengqun; Yoder, Mervin C.; Leboulch, Philippe; Payen, Emmanuel; Srivastava, Arun; Department of Pediatrics, IU School of MedicineWe have reported that of the 10 commonly used AAV serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem/progenitor cells (HSPCs). However, the transduction efficiency of the wild-type (WT) AAV6 vector varies greatly in HSPCs from different donors. Here we report two distinct strategies to further increase the transduction efficiency in HSPCs from donors that are transduced less efficiently with the WT AAV6 vectors. The first strategy involved modifications of the viral capsid proteins where specific surface-exposed tyrosine (Y) and threonine (T) residues were mutagenized to generate a triple-mutant (Y705 + Y731F + T492V) AAV6 vector. The second strategy involved the use of ex vivo transduction at high cell density. The combined use of these strategies resulted in transduction efficiency exceeding ~90% in HSPCs at significantly reduced vector doses. Our studies have significant implications in the optimal use of capsid-optimized AAV6 vectors in genome editing in HSPCs.