- Browse by Author
Browsing by Author "Tan, Jianguo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Duplicating Complete Dentures with Conventional and Digital Methods: Comparisons of Trueness and Efficiency(MDPI, 2022) Chen, Li; Li, Deli; Zhou, Jianfeng; Lin, Wei-Shao; Tan, Jianguo; Prosthodontics, School of DentistryBackground: A complete denture (CD) can be duplicated with a conventional or digital protocol. However, there are no comparative studies of these methods. This study aimed to compare the trueness and efficiency of conventional and digital CD duplication methods. Methods: A mandibular CD was digitized as the virtual reference model and duplicated using five methods (n = 10). The trueness (root mean square (RMS)) was calculated for the whole denture and across the dentition, cameo denture extension, and intaglio portions. The manual labor time spent during denture duplication was also recorded at different steps. The trueness and labor time comparisons were statistically analyzed among the five groups (α = 0.05). Results: The conventional group was the least true with the largest RMS (mean, 95% CI) in all of the comparisons. The four digital groups yielded similar trueness values across the dentition, cameo denture extension, and intaglio areas, yet they had a significant difference in the whole denture comparison between the Digital-CBCT-SLA printer (0.17, 0.15-0.19 mm) and Digital-Laboratory Scanner-SLA printer (0.13, 0.11-0.15 mm). The conventional protocol required longer trimming and finishing time (7.55 ± 1.02 min), as well as total labor time (27.64 ± 1.72 min) than the other four digital techniques. Conclusions: The conventional CD duplication method was less true and efficient than digital techniques.Item Enhanced Antibacterial Effect on Zirconia Implant Abutment by Silver Linear-Beam Ion Implantation(MDPI, 2023-01-13) Yang, Yang; Liu, Mingyue; Yang, Zhen; Lin, Wei-Shao; Chen, Li; Tan, Jianguo; Prosthodontics, School of DentistryPeri-implant lesions, such as peri-implant mucositis and peri-implantitis, are bacterial-derived diseases that happen around dental implants, compromising the long-term stability and esthetics of implant restoration. Here, we report a surface-modification method on zirconia implant abutment using silver linear-beam ion implantation to reduce the bacterial growth around the implant site, thereby decreasing the prevalence of peri-implant lesions. The surface characteristics of zirconia after ion implantation was evaluated using energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and a contact-angle device. The antibacterial properties of implanted zirconia were evaluated using Streptococcus mutans and Porphyromonas gingivalis. The biocompatibility of the material surface was evaluated using human gingival fibroblasts. Our study shows that the zirconia surface was successfully modified with silver nanoparticles by using the ion-implantation method. The surface modification remained stable, and the silver-ion elution was below 1 ppm after one-month of storage. The modified surface can effectively eliminate bacterial growth, while the normal gingiva’s cell growth is not interfered with. The results of the study demonstrate that a silver-ion-implanted zirconia surface possesses good antibacterial properties and good biocompatibility. The surface modification using silver-ion implantation is a promising method for future usage.