- Browse by Author
Browsing by Author "Talavage, Thomas M."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Accumulation of high magnitude acceleration events predicts cerebrovascular reactivity changes in female high school soccer athletes(Springer, 2018) Svaldi, Diana O.; Joshi, Chetas; McCuen, Emily C.; Music, Jacob P.; Hannemann, Robert; Leverenz, Larry J.; Nauman, Eric A.; Talavage, Thomas M.; Neurology, School of MedicineMitigating the effects of repetitive exposure to head trauma has become a major concern for the general population, given the growing body of evidence that even asymptomatic exposure to head accelerations is linked with increased risk for negative life outcomes and that risk increases as exposure is prolonged over many years. Among women's sports, soccer currently exhibits the highest growth in participation and reports the largest number of mild traumatic brain injuries annually, making female soccer athletes a relevant population in assessing the effects of repetitive exposure to head trauma. Cerebrovascular biomarkers may be useful in assessing the effects of repetitive head trauma, as these are thought to contribute directly to neurocognitive symptoms associated with mild traumatic brain injury. Here we use fMRI paired with a hypercapnic breath hold task along with monitoring of head acceleration events, to assess the relationship between cerebrovascular brain changes and exposure to repetitive head trauma over a season of play in female high school soccer athletes. We identified longitudinal changes in cerebrovascular reactivity that were significantly associated with prolonged accumulation to high magnitude (> 75th percentile) head acceleration events. Findings argue for active monitoring of athletes during periods of exposure to head acceleration events, illustrate the importance of collecting baseline (i.e., pre-exposure) measurements, and suggest modeling as a means of guiding policy to mitigate the effects of repetitive head trauma.Item Effects of Dietary Protein and Fiber at Breakfast on Appetite, ad Libitum Energy Intake at Lunch, and Neural Responses to Visual Food Stimuli in Overweight Adults.(MDPI, 2016-01) Sayer, R. Drew; Amankwaah, Akua F.; Tamer, Gregory G.; Chen, Ningning; Wright, Amy J.; Tregellas, Jason R.; Cornier, Marc-Andre; Kareken, David A.; Talavage, Thomas M.; McCrory, Megan A.; Campbell, Wayne W.; Department of Neurology, IU School of MedicineIncreasing either protein or fiber at mealtimes has relatively modest effects on ingestive behavior. Whether protein and fiber have additive or interactive effects on ingestive behavior is not known. Fifteen overweight adults (5 female, 10 male; BMI: 27.1 ± 0.2 kg/m2; aged 26 ± 1 year) consumed four breakfast meals in a randomized crossover manner (normal protein (12 g) + normal fiber (2 g), normal protein (12 g) + high fiber (8 g), high protein (25 g) + normal fiber (2 g), high protein (25 g) + high fiber (8 g)). The amount of protein and fiber consumed at breakfast did not influence postprandial appetite or ad libitum energy intake at lunch. In the fasting-state, visual food stimuli elicited significant responses in the bilateral insula and amygdala and left orbitofrontal cortex. Contrary to our hypotheses, postprandial right insula responses were lower after consuming normal protein vs. high protein breakfasts. Postprandial responses in other a priori brain regions were not significantly influenced by protein or fiber intake at breakfast. In conclusion, these data do not support increasing dietary protein and fiber at breakfast as effective strategies for modulating neural reward processing and acute ingestive behavior in overweight adults.Item Every hit matters: White matter diffusivity changes in high school football athletes are correlated with repetitive head acceleration event exposure(Elsevier, 2019-07-16) Jang, Ikbeom; Chun, Il Yong; Brosch, Jared R.; Bari, Sumra; Zou, Yukai; Cummiskey, Brian R.; Lee, Taylor A.; Lycke, Roy J.; Poole, Victoria N.; Shenk, Trey E.; Svaldi, Diana O.; Tamer, Gregory G., Jr.; Dydak, Ulrike; Leverenz, Larry J.; Nauman, Eric A.; Talavage, Thomas M.; Neurology, School of MedicineRecent evidence of short-term alterations in brain physiology associated with repeated exposure to moderate intensity subconcussive head acceleration events (HAEs), prompts the question whether these alterations represent an underlying neural injury. A retrospective analysis combining counts of experienced HAEs and longitudinal diffusion-weighted imaging explored whether greater exposure to incident mechanical forces was associated with traditional diffusion-based measures of neural injury-reduced fractional anisotropy (FA) and increased mean diffusivity (MD). Brains of high school athletes (N = 61) participating in American football exhibited greater spatial extents (or volumes) experiencing substantial changes (increases and decreases) in both FA and MD than brains of peers who do not participate in collision-based sports (N = 15). Further, the spatial extents of the football athlete brain exhibiting traditional diffusion-based markers of neural injury were found to be significantly correlated with the cumulative exposure to HAEs having peak translational acceleration exceeding 20 g. This finding demonstrates that subconcussive HAEs induce low-level neurotrauma, with prolonged exposure producing greater accumulation of neural damage. The duration and extent of recovery associated with periods in which athletes do not experience subconcussive HAEs now represents a priority for future study, such that appropriate participation and training schedules may be developed to minimize the risk of long-term neurological dysfunction.Item Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion(Mary Ann Liebert, Inc., 2014-02) Talavage, Thomas M.; Nauman, Eric A.; Breedlove, Evan L.; Yoruk, Umit; Dye, Anne E.; Morigaki, Katherine E.; Feuer, Henry; Leverenz, Larry J.; Department of Medicine, IU School of MedicineHead trauma and concussion in football players have recently received considerable media attention. Postmortem evidence suggests that accrual of damage to the brain may occur with repeated blows to the head, even when the individual blows fail to produce clinical symptoms. There is an urgent need for improved detection and characterization of head trauma to reduce future injury risk and promote development of new therapies. In this study we examined neurological performance and health in the presence of head collision events in high school football players, using longitudinal measures of collision events (the HIT(™) System), neurocognitive testing (ImPACT(™)), and functional magnetic resonance imaging MRI (fMRI). Longitudinal assessment (including baseline) was conducted in 11 young men (ages 15-19 years) participating on the varsity and junior varsity football teams at a single high school. We expected and observed subjects in two previously described categories: (1) no clinically-diagnosed concussion and no changes in neurological behavior, and (2) clinically-diagnosed concussion with changes in neurological behavior. Additionally, we observed players in a previously undiscovered third category, who exhibited no clinically-observed symptoms associated with concussion, but who demonstrated measurable neurocognitive (primarily visual working memory) and neurophysiological (altered activation in the dorsolateral prefrontal cortex [DLPFC]) impairments. This new category was associated with significantly higher numbers of head collision events to the top-front of the head, directly above the DLPFC. The discovery of this new category suggests that more players are suffering neurological injury than are currently being detected using traditional concussion-assessment tools. These individuals are unlikely to undergo clinical evaluation, and thus may continue to participate in football-related activities, even when changes in brain physiology (and potential brain damage) are present, which will increase the risk of future neurological injury.Item Information theoretic evaluation of a noiseband-based cochlear implant simulator(Elsevier, 2016-03) Aguiar, Daniel E.; Taylor, N. Ellen; Li, Jung; Gazanfari, Daniel K.; Talavage, Thomas M.; Laflen, J. Brandon; Neuberger, Heidi; Svirsky, Mario A.; Department of Otolaryngology--Head & Neck Surgery, School of MedicineNoise-band vocoders are often used to simulate the signal processing algorithms used in cochlear implants (CIs), producing acoustic stimuli that may be presented to normal hearing (NH) subjects. Such evaluations may obviate the heterogeneity of CI user populations, achieving greater experimental control than when testing on CI subjects. However, it remains an open question whether advancements in algorithms developed on NH subjects using a simulator will necessarily improve performance in CI users. This study assessed the similarity in vowel identification of CI subjects and NH subjects using an 8-channel noise-band vocoder simulator configured to match input and output frequencies or to mimic output after a basalward shift of input frequencies. Under each stimulus condition, NH subjects performed the task both with and without feedback/training. Similarity of NH subjects to CI users was evaluated using correct identification rates and information theoretic approaches. Feedback/training produced higher rates of correct identification, as expected, but also resulted in error patterns that were closer to those of the CI users. Further evaluation remains necessary to determine how patterns of confusion at the token level are affected by the various parameters in CI simulators, providing insight into how a true CI simulation may be developed to facilitate more rapid prototyping and testing of novel CI signal processing and electrical stimulation strategies.Item Sub-concussive Hit Characteristics Predict Deviant Brain Metabolism in Football Athletes(Taylor and Francis, 2015) Poole, Victoria N.; Breedlove, Evan L.; Shenk, Trey E.; Abbas, Kausar; Robinson, Meghan E.; Leverenz, Larry J.; Nauman, Eric A.; Dydak, Ulrike; Talavage, Thomas M.; Department of Radiology and Imaging, IU School of MedicineMagnetic resonance spectroscopy and helmet telemetry were used to monitor the neural metabolic response to repetitive head collisions in 25 high school American football athletes. Specific hit characteristics were determined highly predictive of metabolic alterations, suggesting that sub-concussive blows can produce biochemical changes and potentially lead to neurological problems.